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Abstract—Over the course of recent years, Radio Frequency
Identification (RFID) technology has been applied in many
different business domains to solve, for example, the problem
of monitoring stock. However, keeping track of the exact (geo-
)locations of items in stock is still an open problem. This is
particularly problematic for logistics, retail as well as ware-
houses, where information about relative locations of items can
drastically increase staff efficiency and business process efficacy.
In this paper we set out to tackle the problem of determining
relative distances between RFID tags based on time-differences
in read events, without the introduction of additional hardware.
To that end, we first present a novel approach, which leverages
time-based distances for inferring relative RFID tag distances.
We then qualitatively and quantitatively evaluate our proposed
approach by (i) inferring tag locations for different experimental
setups and (ii) comparing our results to ground truth data. Our
results show that time-differences in read events are suitable for
calculating and approximating the relative position of RFID tags
in several setups. We strongly believe that the results presented
in this paper represent a novel and important step towards new
approaches, which leverage time-differences in read events for
inferring relative tag distances.

Index Terms—RFID, localization, multidimensional scaling

I. INTRODUCTION

The Radio Frequency Identification (RFID) technology is
widely adopted and used in a variety of different applications
in retail [1], logistics [2], security [3], and health care [4],
among others. One of its main features is the ability to
track and identify objects over several meters, without direct
line-of-sight, which builds a solid foundation for practical
applications, such as stocktaking. Further, the costs of these
RFID-based systems are relatively low, which make them
particularly interesting for inventory management in logistics,
retail, and warehouses.

Problem. However, while RFID-based inventory management
is able to solve the problem of monitoring which items are in
stock at any given point in time, keeping track of the exact
(geo-)locations of items is still an open problem [5]. In gen-
eral, staff of retail stores and warehouses conduct stocktakes
using mobile RFID readers, which collect identifiers (i.e., the
Electronic Product Code or EPC) of tagged products and the
timestamps of when each individual tag was read. While this
data suffices for taking stock, the exact (geo-)location of the
read RFID tags is still unknown. In practice, this means that
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common tasks, such as the picking of items requested by
customers become tedious and time-consuming, especially if
items are not in their designated locations.

Such misplaced articles can lead to financial losses, as
customers and store or warehouse staff are unable to (quickly)
retrieve these articles. Raman et al. [5] presented a study,
where they showed that customers of a retail store could
not find 16% of items as they were misplaced (e.g., on the
wrong shelf) in the store. Finding such misplaced items on the
sales floor is time-consuming, even for RFID-based inventory
management systems, as they mostly lack the ability to locate
RFID tags.

The localization of misplaced items usually requires ad-

ditional hardware [6] (e.g., antennas or high-power RFID
readers). An approach which circumvents this requirement [7],
leverages the signal strength of RFID read events to estimate
the distance to a tag. However, this approach suffers from
several limitations. First of all, the reader needs to be in
close proximity to the tag in the first place (i.e., UHF RFID
tags commonly used in retail settings can usually only be
read over the range of a few meters using standard mobile
RFID readers). Second, read signals are also inaccurate due
to the fluctuation of the signal strength of RFID tags. Third,
localization via this approach can only be performed for one
RFID tag at a time.
Approach. In this paper we set out to tackle the problem
of determining relative distances between RFID tags based
on time-differences in read events, without the introduction of
additional hardware. Specifically, we leverage information that
is already generated during stocktakes, such as the timestamp
and the received signal strength indication (RSSI) of every
read event, which we use to infer relative (temporal) distances
between RFID tags. As read events can be very noisy (e.g., a
particular RFID tag can be read multiple times due to signal
reflections, even though it is not in focus), we preprocess our
data to estimate the point(s) in time when an RFID tag was in
focus of the mobile reader. Based on this information, we can
infer temporal distances between RFID tags, which we map
into two-dimensional space using Multidimensional Scaling
(MDS). As a result, we obtain relative geospatial information
(i.e., relative distances between RFID tags), which allows us to
locate misplaced items by relating them to the relative position
of other items.



Contributions. We present two approaches to determine rela-
tive locations of RFID tags, based on the timestamps and RSSI
values of read events. Specifically, we use temporal distances
between read events, which we map to estimated geometrical
distances using MDS. The key contributions of our work are:

o First, we present a novel approach to leverage time-
differences between read events for inferring relative
RFID tag distances.

o Second, we further extend our approach by incorporating
RSSI values into the calculation of geometrical distances.

o Third, we publish the data' used in our experiments to
enable researchers not only to reproduce but also develop
additional extensions to our presented approaches.

We strongly believe that the results presented in this paper
represent a novel and very important step towards leveraging
the information of temporal distances for inferring relative
RFID tag distances.

II. RELATED WORK

In this section we highlight related work on positioning
algorithms (see Section II-A) and indoor location systems (see
Section II-B).

A. Positioning Algorithms

Liu et al. [8] analyze different schemes for location estima-
tion. Specifically, triangulation/trilateration and proximity are
applicable to our setup under certain circumstances.
Triangulation/Trilateration. Both, triangulation and trilater-
ation, are methods to position an object using three reference
points. While the former uses the angles between an object and
reference points to estimate the position, the latter takes the
distances between an object and reference points into account.

The distances for the lateration approach are typically
derived from measurements such as time-of-arrival (i.e., the
one-way propagation time of a signal to a receiver) [9],
[10], or received signal strength [9], [11]. For each of the
reference points, the distance approximation creates a circle
with potential locations of the tag. A basic trilateration ap-
proach would be to calculate the intersection of the circles to
determine its position. In contrast to trilateration, triangulation
uses the angle-of-arrival (i.e., the angle from which the signal
arrives at the receiver) instead of the distances to calculate the
positions [12].

In contrast to work on trilateration, we only consider one

RFID reader, scanning many passive tags. As the reader is the
only active device and the location of the reader is unknown
during our experiments, triangulation or trilateration methods
are not applicable to our problem.
Proximity. Proximity methods are usually implemented with
a dense grid of antennas. If a tag is in the range of an
antenna (i.e., the reader detects the tag), it is considered to
be collocated to this antenna. If multiple readers detect the
tag, the antenna with the highest signal strength is selected.

Thttps://github.com/DetegoDS/tag_localization

Song et al. [13], for example, use a proximity-based al-
gorithm to locate materials on construction sites with 20
reference tags arranged in a dense grid, and an RFID reader,
which also leverages GPS to determine its own position. Other
location systems, which use proximity methods are proposed
by Simic and Sastry [14] and He et al. [15].

In this paper we build upon the underlying idea of proximity
based location algorithms to infer relative distances between
RFID tags. However, in our setup we only use a single
mobile RFID reader and passive RFID tags, without the reader
knowing its actual position.

B. Indoor Location Systems

Hightower and Borriello [16] provide a brief introduction
into the problem of indoor localization and provide a taxon-
omy of location systems.

Further, they discuss different techniques for localization,

such as infrared (Active Badge [17]), ultrasound (Active
Bat [18] and Cricket [19]), and computer vision (Easy Liv-
ing [20]).
RFID-based Location Systems. The SpotON system pro-
posed by Hightower et al. [21] was one of the first location
systems relying on RFID technology. However, instead of
using conventional RFID tags they use custom-built active
RFID tags, specifically designed for localization, with the
primary requirement of being able to provide exact signal
strength measurements. In addition to the custom RFID tags,
they use multiple stationary RFID readers, distributed over
space, reporting signal strength of detected RFID tags to a
central server, to triangulate the position of the RFID tag.

Alippi et al. [22] propose a stochastic approach that also
requires multiple readers to cover the area under investigation.
Several other approaches exist, which usually require either a
setup of multiple readers or antennas [6], [23], [24].

The LANDMARC system [25] uses a similar method, but
instead of expensive readers as base stations, they work with
active RFID tags as reference tags. The number of reference
tags to use and where to position them has to be decided based
on the environment for the localization. In their experiments,
the authors used a dense grid of reference tags, where the
position of an object is calculated as a weighted sum of the
coordinates of the k nearest reference tags.

Saab and Nakad [26] estimate the position of a vehicle or a
person in an indoor environment. More specifically, they use
RFID technology and track an RFID reader along a path that
has passive RFID tags next to it. They store the positions of
these tags in a database and estimate the distances between the
reader and the tags using the RSSI of the backscattered signals.
Subsequently, they use the estimated distances to calculate the
position of the reader via trilateration.

Joho et al. [27] propose a probabilistic sensor model that
can be trained using unsupervised learning. The sensor model
specifies the likelihood to get a measurement z given the
orientation x of the antenna and the location lg of tag with
ID g. This probabilistic model p(z|x,1lg) can be learned from
data, and using Bayes’ rule the posterior p(lg|x, z) can later be
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Fig. 1: Temporal Distances Illustration. This figure illus-
trates the calculation of temporal distances for RFID tag read
events. Bottom: We have highlighted the read events of 4
different RFID tags (vertical bars) over time (x-axis), which is
the foundation for our Temporal Distances approach. For this
approach, we calculate minimum pairwise differences between
the timestamps of all read events of the different RFID tags.
Top: We show the corresponding RSSI values (y-axis) over
the same period of time (z-axis), illustrating our RSSI Peaks
approach. In contrast to the previous method, we first group
RFID tag read events into segments where consecutive reads
are not longer apart than 1, 000 milliseconds. For example, for
Tag 1 (blue), we would obtain 3 segments (from 0 to 2.5, 13
to 14, and 15 to 16 seconds). Due to our filtering (i.e., each
segment has to contain at least 5 read events to minimize the
impact of stray reads), we would only obtain one segment for
Tag 3 (green) (from 9 to 11 seconds), as the other segment
(starting at t = 3 seconds) only contains 4 read events. Finally,
we select the timestamp corresponding to the center of RSSI
maxima per segment and again calculate minimum pairwise
differences only between the timestamps of these peak RSSI
values to determine temporal distances.

evaluated. However, due to the vast number of combinations
between antenna orientations and locations of the tag, this
calculation is unfeasible for practical applications. Therefore,
Joho et al. [27] use locations relative to the antenna rather
than absolute locations. As a result, to be able to localize tags
using this model, the position of the reader has to be known at
all times. In their setup, they drive a shopping cart that has the
RFID reader and a laser range scanner mounted on it. They
use laser-based FastSLAM [28] to localize the antenna and
estimate the distances of the tags afterwards.

In contrast to existing work, our approach builds upon the
premise that we can infer relative RFID tag locations only by
leveraging timestamps and RSSI values of read events. Note
that all approaches based on RSSI values are fundamentally
subject to multipath propagation [29], which potentially affects
reading performance and thus, the overall quality of the
obtained results.

[II. METHODOLOGY

A. Data Collection & Preprocessing

During all experiments described in this paper, we store
(1) the Unix timestamp in milliseconds, (ii) the EPC encoded
on the RFID tag and (iii) the RSSI in dBm of the received
signal for each read event. The amount of data that we collect

varies between experiments and depends on the duration of
the experiment, as well as the amount and frequency of read
RFID tags.

For data preprocessing, we first remove all read events of
RFID tags, which are not part of the set of tags used in
our experimental setup. Next, we scale timestamps for each
experiment to start at ¢ = 0, while each following entry
corresponds to the number of elapsed milliseconds since the
beginning of the experiment. Note that we publish our dataset?
to support the development of new approaches that build upon
the presented methodology.

B. Estimating Relative Tag Distances

For estimating relative tag distances we first introduce a
naive approach—Temporal Distances—which leverages only
the timestamp of each RFID tag read event. Furthermore,
we present an additional approach—RSSI Peaks—which also
leverages RSSI values, targeted towards reducing noisy reads.
Temporal Distances. For our first approach we solely leverage
timestamps of RFID tag read events. Given that distance is
a function of speed and time, we assume that the former is
constant, so that distance equals time scaled by constant speed.
The relative distance between pairs of RFID tags is determined
by the minimum duration (i.e., elapsed milliseconds) between
all read events of these tags (see bottom part of Figure 1). We
see this setup as a very naive baseline, against which we can
measure other approaches that include additional information.
Temporal Distances and RSSI Peaks. In contrast to Temporal
Distances, we include the RSSI of each read event in our
calculation of relative distances. Specifically, we are interested
in approximating the actual point in time when the mobile
RFID reader points directly towards any given tag; assuming
best reading performance. In theory, this should correspond to
the point in time when the RSSI value reaches its maximum
for a given tag. As depicted in the top of Figure 1, we receive
smaller RSSI values for a tag as it enters the reading field
of the reader. The value increases until it reaches its peak
when both the reader and the RFID tag are aligned (i.e., the
reader points at the RFID tag), and decreases until it leaves the
reading field again. Note that several factors can influence the
magnitude of the RSSI values, such as RF power or orientation
and placement of RFID tags (e.g., many other nearby RFID
tags, or metal surfaces).

To calculate temporal distances leveraging RSSI peaks,
we first partition the RSSI sequences for each RFID tag by
time-differences larger than 1,000 milliseconds between read
events. Note that we set our partition threshold so that only
roughly 5% of all observed time-differences introduce a new
partition.

Hence, we obtain several segments per RFID tag, for which
we determine the timestamp of the RSSI peak values (i.e.,
center of maxima), which we then use for calculating pairwise
minimum differences, instead of using every single read event.
Further, we remove segments with fewer than 5 read events

Zhttps://github.com/DetegoDS/tag_localization
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Fig. 2: Methodology. The figures depict the different steps of our methodology. First, we generate a ground truth dataset for
each layout, which we infer from empirical distances between our RFID tags (Figure 2a). Then, we apply MDS on the temporal
distances between our RFID tags (Figure 2b), which yields results invariant to scale, translation and rotation. After applying
Procrustes analysis (i.e., scaling, rotating, flipping and translating) on the estimated coordinates (Figure 2c) we calculate Mean
Absolute Error between RFID tag coordinates. Additionally, we calculate correlation between the estimated temporal and

empirical distances of our RFID tags.

to minimize noise in our data (i.e., stray reads). Note that our
approach is subject to multipath propagation [29] and results
might suffer from noisy RSSI values. At this point, we leave
further investigations into noise minimization open for future
work.

C. Evaluation

To be able to evaluate our proposed approaches, we first
generate a ground truth for each of our experiments, consisting
of coordinates for each tag in two-dimensional space (see
Figure 2a). We then apply MinMax scaling individually on the
z- and y-coordinates to obtain the scaling factors, which are
the differences between the minimum and maximum values
in each dimension. These scaling factors are later applied on
the estimated distances so that we can compare them to the
placement of the tags in the ground truth.

Next, we apply metric MDS [30], [31] on our estimated
RFID tag distances to obtain estimated coordinates for each
individual RFID tag. Specifically, MDS is a method for visu-
alizing data based on similarity or dissimilarity measurements,
referred to as proximities. Given the proximity proxies of
a set of points, MDS finds a geometrical representation of
these points so that the pairwise distances match the proxy
measurements as close as possible (see Figure 2b).

We then normalize the estimated coordinates using MinMax
scaling and receive coordinate values in the range of 0 and 1.
To evaluate our results we translate the estimated and ground
truth coordinates, such that the center of mass of both sets
of coordinates are in the point of origin. However, as the
solutions of MDS are invariant with respect to rotation we
additionally apply Procrustes analysis [32] to determine the
required rotation which minimizes the error to the ground
truth. Finally, we apply the ground truth scaling factors on
all coordinates, which allows us to calculate Mean Absolute
Error (MAE) in Euclidean distance (see Figure 2c). For n tags,
we calculate the MAE of the coordinates as follows:

1 n
MAE = — T 1
POLEL] 1)

where ||-|| denotes the euclidean distance, and c; and €&; the
ground truth and the estimated coordinate vector of the i
RFID tag. Note that we neglect RFID tags that were not read
during our experiments for the calculation of MAE.

Additionally, we calculate Pearson correlation coefficient
between the ground truth and estimated distances. High
correlation coefficients for our experiments indicate similar
(relative) distances between the RFID tags in the ground truth
and estimated distances.

IV. EXPERIMENTAL SETUP

A. RFID Hardware

We use the ZEBRA RFD8500 handheld mobile RFID reader
for our experiments. We configure the device to use Session 0
in AB flip mode. Further, we set the power level of the reader
to the maximum value of 30.0 dBm, which equals 1W, for all
our experiments. We connect a mobile device running Android
to the reader via Bluetooth to collect timestamps, RSSI values,
and the corresponding EPCs for each read event, and store the
collected data on the phones internal storage. We use 70 or 80
RFID tags, depending on the experiment (see Section IV-C),
of the model UPM Web 208_3, which is commonly used in
retail applications.

B. Facilities

We conduct all experiments in a large room containing work
tables, toolboxes, racks, and several additional RFID tags.
Note that the room also contained several metal constructions
(see Figure 3), such as a conveyor belt, highlighting that our
test facility largely represents a real-world setting with high
potential for noisy reads.
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Fig. 3: Layout of Experiments. The figures depict the layouts (left) and their corresponding ground truth datasets (right),
which we use to test our proposed methodology under different conditions. Figure 3a depicts a Two-Dimensional Layout, with
all panels aligned in a rectangular shape. The second layout, depicted in Figure 3b, shows the Asymmetric Two-Dimensional
Layout, where two panels are put behind two other panels. Finally, Figure 3c depicts the Three-Dimensional Layout, where
two panels are stacked upon two other panels. Note that due to the two-dimensional representation of our ground truth, panels
are put on top of each other, resulting in overlapping markers in Figure 3c.

C. Layout of Experiments

For our experiments, we use wooden tables that we arrange
in different layouts. We attach RFID tags in groups of ten
on polystyrene panels, where each panel simulates a group of
products of the same class. Note that RFID tags with the same
color in our visualization are placed on the same panel.
Two-Dimensional Layout (2D). For this layout we arranged
four tables in a rectangular shape, and distribute seven panels
(70 RFID tags) across them, with one table only containing a
single panel. Figure 3a shows a photograph of the setup on the
left, and the corresponding ground truth dataset on the right.
Asymmetric Two-Dimensional Layout (Asymmetric 2D).
To evaluate if we can use temporal distances to recover depth
information, we adapt the 2D Layout by adding an additional
panel (i.e., 80 RFID tags in total) and putting one table behind
another one (i.e., having an asymmetric layout with two panels
in the front and two in the back). See Figure 3b for a picture
of the setup and the corresponding ground truth.
Three-Dimensional Layout (3D). In contrast to the previous
layouts, we are now interested in measuring the impact of
differences in height on temporal distances. To simulate this

TABLE I: Circular Walk Dataset. For each layout we
conduct several experiments (# iter, defining how often we
follow the circular walk). We perform all experiments three
times and list the median number of read events (# Events),
the median number of read events by tag (# Events per
Tag) and the median duration (Duration) of the experiment
in the corresponding row. Further, we depict the median
number of read RFID tags (Tags Read) and their corresponding
percentage of overall RFID tags read.

L #iter # Events # Events Duration  Tags Read

ayout
per Tag

1 2,769 41 20s 66 (94%)

2D 2 6,010 85 46s 68 (97%)

4 8,841 126 86s 70 (100%)

1 1,486 26 22s 43 (53%)

Asymmetric 2D 2 3,710 46 41s 58 (72%)

4 4,718 62 80s 61 (76%)

3D 1 2,334 36 22s 65 (81%)

2 5,054 63 48s 75 (93%)
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Fig. 4: Circular Walk Reading Pattern. For every different
layout (i.e., 2D, Asymmetric 2D and 3D), we try to read RFID
tags following always the same circular path (see arrow) for

multiple repititions (i.e., iterations).

setup, we use 8 panels (80 RFID tags) and stack two tables—
with two panels each—on top of each other (see Figure 3c).
In any two-dimensional setting, RFID tags placed on top of
each other will overlap in coordinates, which is also true for
our corresponding ground truth dataset. Note that our ground
truth and estimated coordinates for this layout are in two-
dimensional space.

D. Circular Walk Reading Pattern

For every layout, we perform multiple experiments (see #
iter in Table I). In particular, we repeat all 2D Layout and the
Asymmetric 2D Layout experiments three times, doing one
iteration, two iterations, and four iterations, while we only
conduct one and two iterations for the 3D Layout, as four
iterations perform similar to two iterations in all previous
experiments. Note that once we start one experiment, we
activate the RFID reader and continuously scan for RFID
tags, while walking along the tables in a clockwise, circular
motion (i.e., a circular walk; see Figure 4 for a schematic of
the Circular Walk Layout and Table I for an overview of the
characteristics of the performed experiments).
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Fig. 5: Circular Walk Results. This Figure depicts the results for a selection of our circular walk experiments. When only
conducting a single iteration, without reading panels of RFID tags multiple times, our proposed methodology maximizes the
distance between the first and the last read panel (see Figure 5a). Once information between the distance of the last and the
first panel is available (i.e., for 2 and more iterations), positioning of the RFID tags works within reasonable error margins
(see Figure 5b). Our method produces a larger error when trying to reconstruct depth information (see Figure 5c) as we ignore
relative differences of RSSI values between RFID tags read close to each other. In contrast, when reading RFID tags that are
positioned on top of each other (see Figure 5d), we achieve better results, as RSSI values are not needed (in two-dimensional

space) to position RFID tags.

V. RESULTS & DISCUSSION

A. Two-Dimensional Layout

As depicted in Figure 5a, our approach struggles to correctly
infer relative distances between RFID tags after only a single
iteration (i.e., one round, without reading any of the starting
RFID tags at the end of the experiment again). Once we add
the missing temporal distances between the last and the first
panel (e.g., by continuing the circular walk and reading the
first panel twice), our proposed approach manages to group
RFID tags close to their actual location in the ground truth
(see Figure 5b). Specifically, we achieve an MAE of 28.36 cm
for the Temporal Distance approach with the 2D Layout after
two iterations, and a correlation coefficient of r = 0.94 (see
2D Layout in Table II). The RSSI Peaks approach performs
similar with an MAE of 29.18 cm after four iterations and
r = 0.95.

TABLE II: Circular Walk Results. In this Table we describe
the results of our three layouts (rows), the different numbers
of iterations (# iter) and the two implemented approaches
(Temporal Distance and RSSI Peaks columns) in the form
of MAE and the correlation coefficient r. We calculate MAE
between the coordinates of our ground truth and estimated
RFID tag coordinates, and the correlation coefficient between
the temporal distances and the distances in our ground truth.

. Temporal Distance RSSI Peaks
Layout # iter MAE r MAE "
1 126.80 0.75 101.96  0.73
2D 2 28.36 0.94 36.08 092
4 28.65 0.94 29.18 095
1 108.11 0.65 103.08  0.65
Asymmetric 2D 2 88.92 0.78 86.86  0.79
4 89.91 0.64 94.02  0.63
3D 1 91.57 0.78 88.18  0.76
2 46.91 0.74 4092 083

Discussion. Due to the underlying mechanisms of how we
infer distances, it is detrimental for all our approaches that
we create overlaps between tags that we have read at the end
and the start of each experiment. Without these overlaps, our
proposed methodology maximizes the distance between the
first and last group of read RFID tags, resulting in a diagonal
line in two-dimensional space, as depicted in Figure 5a.
However, while MAE between the estimated and ground truth
coordinates of our RFID tags is rather high (126.8 cm), we
can already clearly distinguish the different panels (see colors
of estimated RFID tag coordinates). If we provide distance
information between the last and the first panel (i.e., after
two iterations), we can infer the circular layout from our data
which now allows us to position RFID tags closer to their
actual positions, with an MAE of 28.36 cm.

Additionally, we increase the correlation coefficient between
our ground truth and estimated RFID tag distances from r =
0.75 to » = 0.95. This means that we can observe similar
(relative) distances between our RFID tags in the ground truth
and the estimated distances.

B. Asymmetric Two-Dimensional Layout

After only one iteration we obtain an MAE of 108.11 cm
and a correlation coefficient of » = 0.65 for our Temporal
Distances approach. In contrast to our 2D Layout, when run-
ning the experiment for multiple iterations, MAE for Temporal
Distances improves by 19.19 cm to an error of 88.92 cm with
a correlation coefficient of » = 0.78, with the RSSI Peaks
approach performing similarly. When inspecting Figure Sc,
we can see that some RFID tag panels of our estimated tag
locations are still easily distinguishable (e.g., yellow, brown,
grey, and pink), while the exact positions of the panels placed
behind each other (i.e., the purple, green, blue, and red panels)
appear to be harder to reconstruct with our approach.
Discussion. As we calculate temporal distances only based
on the difference in time between read events of the corre-
sponding RFID tags, reconstructing depth-information for this



layout is very hard. Specifically, when standing in front of
the four shifted panels (i.e., purple, green, blue, and red), we
receive read events of RFID tags from all four panels, which
is also visible in Figure 5c. One solution to better tackle this
problem could be to add an additional stream of information,
such as relative differences in RSSI of all RFID tags read
around the same time, to properly infer depth information
for the calculation of relative distances. However, given that
RSSI is very unreliable, further research and experiments are
warranted to validate if and to what extent results for this setup
can be improved. Further, we can see from our experiments
that more than two iterations do not help to improve the results,
most likely due to the introduction of additional noise.

C. Three-Dimensional Layout

We achieve the best MAE (40.92 cm) and correlation
coefficient (r = 0.83) for this layout after two iterations
with the RSSI Peaks approach. As depicted in Figure 5d, we
can detect the different RFID tag panels. As outlined in the
description of this layout, there are two RFID tag panels (i.e.,
green and red as well as blue and purple) that overlap each
other in this setup. According to our results, we can place
these two clusters in very close proximity in our ground truth.
Discussion. Due to the way our approach handles differences
in height, we can achieve better results for MAE (46.91 cm)
and correlation coefficients (r=0.83) than for the Asymmetric
2D Layout, which also indicates that differences in height
appear to be less problematic for inferring temporal distances
than differences in depth.

D. Random Walk on Two-Dimensional Layout

In addition to the circular walk we also conduct first
experiments following a random walk using our 2D Layout
(see Figure 6a and Table III). Note that we follow the same
path multiple times when conducting multiple iterations in
this experiment. While our approaches can detect relative
distances as well as the panels the RFID tags were put on (see
Figure 6b), evident in the correlation coefficient of r = 0.6,
they struggle to infer the correct positions of the tags. MAE,
even after 4 iterations, remains at 114.35 cm, which is higher
than for all other experiments (see Table IV).

TABLE III: Random Walk Dataset. For each layout we
conduct several experiments (# iter, defining how often we
follow the selected path). We perform all experiments three
times and list the median number of read events (# Events),
the median number of read events by tag (# Events per
Tag) and the median duration (Duration) of the experiment
in the corresponding row. Further, we depict the median
number of read RFID tags (Tags Read) and their corresponding
percentage of overall RFID tags read.

#iter # Events # Events Duration  Tags Read
per Tag
1 2,637 34 19s 65 (92%)
Random Walk 2 5,008 67 40s 69 (98%)
4 5,808 86 80s 68 (97%)
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Fig. 6: Random Walk on Two-Dimensional Layout Results.
We provide a schematic of the random walk approach for the
2D Layout in Figure 6a. Note that we follow the same random
path (see Annotations 1 to 4) if we conduct more than one
iteration in an experiment. While the error in terms of RFID
tag positions is rather high, we can still easily distinguish the
different RFID tag panels (see Figure 6b). Further, we can
observe a similar problem, as for all experiments with only
a single iteration. Distances between sequentially read panels
are well estimated (e.g., (1) red, and (2) orange & brown),
while the distances between further spread apart panels are
influenced by stray reads, provoked by the random walk (e.g.,
(1) red, and (3) blue & green).

Discussion. As we only use timestamps of read events to
infer distances between RFID tags, random walks represent
a very challenging setup for our proposed methodology. In
general, the results of our random walk experiment exhibit the
worst MAE and correlation coefficient across all experiments.
However, we can see that, with increasing iterations, MAE
steadily decreases while the correlation coefficient increases,
improving our results. We hypothesize that—in contrast to
the circular walk—multiple iterations with different random
walking paths can further improve our results. To verify this
hypothesis more experiments are warranted which we leave
open for future work at this point.

VI. CONCLUSIONS & FUTURE WORK

In this paper we have demonstrated a novel methodology
to infer relative distances between RFID tags leveraging time-
based differences in read events. Specifically, our results
indicate that, depending on the layout of our experiments,
we can infer positions of RFID tags with an MAE of up to

TABLE IV: Random Walk Results. In this Table we list MAE
and the correlation coefficient » for our Random Walk experi-
ments (# iter). We calculate MAE between the coordinates of
our ground truth and estimated RFID tag coordinates, and the
correlation coefficient between the temporal distances and the
distances in our ground truth.

# iter  Temporal Distance RSSI Peaks

MAE r MAE r
1 122.52 0.50 11940 051
Random Walk 2 121.05 0.53 117.67  0.54
4 116.33 0.60 11435  0.58




28.36 cm and a correlation coefficient of up to » = 0.95.
Further, we have shown that we are able to detect groups
of RFID tags, which are put in close proximity to each
other in our ground truth (i.e., the different panels) across all
our experiments. When adding RSSI values to reduce stray
reads, we were able to achieve similar, for certain setups even
better results than when only considering temporal distances.
Finally, we demonstrate preliminary results for reading tags
while following a random path, which steadily improves
performance with additional iterations. As demonstrated in this
paper, our suggested approach yields promising first results,
warranting further investigations to evaluate its performance
in real-world retail applications. Particularly, closely examin-
ing article outliers could represent a first starting point for
detecting misplaced items.

For Future Work we intend to evaluate our approach in a
real-world scenario, which we expect to be more challenging
due to larger numbers of tags that potentially affect the read
performance. Moreover, we additionally plan on including
relative differences between RSSI values of simultaneously
read RFID tags to better reflect depth information. Further,
we are interested in incorporating additional data of sensors,
such as accelerometer or gyroscope, available in the mobile
handhelds into the calculation of temporal distances.

We strongly believe that the methodology and dataset®
presented in this paper will build the foundation for an array of
novel RFID tag localization techniques, all based on temporal
distances.
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