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Abstract—Ever since the inception of the Web website admin-
istrators have tried to steer user browsing behavior for a variety
of reasons. For example, to be able to provide the most relevant
information, for offering specific products, or to increase revenue
from advertisements. One common approach to steer or bias
the browsing behavior of users is to influence the link selection
process by, for example, highlighting or repositioning links on a
website. In this paper, we present a methodology for (i) expressing
such navigational biases based on the random surfer model, and
for (ii) measuring the consequences of the implemented biases.
By adopting a model-based approach we are able to perform
a wide range of experiments on seven empirical datasets. Our
analyses allows us to gain novel insights into the consequences of
navigational biases. Further, we unveil that navigational biases
may have significant effects on the browsing processes of users
and their typical whereabouts on a website. The first contribution
of our work is the formalization of an approach to analyze
consequences of navigational biases on the browsing dynamics
and visit probabilities of specific pages of a website. Second, we
apply this approach to analyze several empirical datasets and
improve our understanding of the effects of different biases on
real-world websites. In particular, we find that on webgraphs—
contrary to undirected networks—typical biases always increase
the certainty of the random surfer when selecting a link. Further,
we observe significant side effects of biases, which indicate
that for practical settings website administrators might need to
carefully balance the desired outcomes against undesirable side
effects.

Index Terms—Navigational Biases, Biased Random Surfer,
Stationary Distribution, Popularity

I. INTRODUCTION

Millions of people access the Web on a daily basis to
conduct a variety of different tasks, such as maintaining social
contacts, buying products in web shops, gathering information,
or just passing time. While surfing the Web, users usually
either traverse static (e.g., breadcrumb navigation) or dynamic
(e.g., personalized recommendations) links, type in the URL
of a website, or use a search engine to find their desired
resource. Previous research has already established that users
exhibit a 65% probability of exploring websites through static
links [10]. Many researchers already directed their efforts
towards these 65% of clicks, analyzing different aspects of
the navigational behavior of users, such as estimating the

probability of a user to traverse a given link by analyzing user
click and interaction trails [13], [25]–[30]. Granka et al. [12]
demonstrated how specific user behaviors directly influence
which links are selected for browsing a website. Furthermore,
Lerman and Ghosh [18] showed that users can be steered
towards certain links by manipulating the interface (e.g., the
position of links). In practice, website administrators often
modify the interface to steer visitors towards certain pages. For
example, owners of online shops might want to steer visitors
towards best-sellers to increase revenue by modifying the
probability that those pages are visited (e.g., by highlighting
or repositioning links towards them).
Problem & Approach. Website administrators are typically
not aware of the exact effects and implications of a particular
modification. Moreover, such modifications may also affect
the selection of other links and may trigger unpredictable
and complex side effects. In fact, we still know very little
about the (potentially) complex impacts of modifications and
manipulations of linking structures on websites. In this paper
we set out to close this knowledge gap. In particular, we
aim at assisting website administrators in estimating the
consequences of inducing specific biases on their website.
In addition, we seek to increase our understanding of the
emerging effects through biased link selection processes.

To this end, we present an approach for assessing the impact
of different navigational biases on visit probabilities and
browsing dynamics on directed webgraphs. We adopt a model-
driven approach, based on the well-established random surfer
model [3], to simulate users browsing a website. Although the
model itself is very simple and straightforward, it provides
a good approximation of actual user browsing behavior [7],
[13], [29], [30].

In particular, we are interested in answering the following
research questions:

Website Coverage. Can certain biases increase the effective
number of pages visited by the random surfer or do they trap
the surfer within specific (small) parts of a website?

Surfer Guidance. Given a specific bias, what is the degree
of guidance (i.e., certainty) induced by that bias? How many
options (on average) are random surfers confronted with when



they select the next link to follow? In other words, to what
extent are browsing decisions purely random and to what
extent do they adhere to a certain structure?

Web Page Response. How do visit probabilities of web pages
respond to a given bias and how do such responses propagate
through a network? For example, are those responses coupled
and how? Specifically, what is the coupling between neigh-
boring pages?
Contributions. In this paper we extend our framework1 for
simulating biased random surfers on networks [8] by ana-
lyzing, comparing and modeling the impact of unbiased and
biased random surfers on directed webgraphs. In particular, we
study real-world, empirical networks to obtain new insights
into the global and local effects of different biases on the
random surfer. Our results suggest that we can strongly and
specifically influence the effective website coverage by using
certain biases. Furthermore, we show that typical biases, such
as popularity biases, always increase the certainty of the
link selection process (i.e., provide a better guidance for the
random surfer). Finally, we analyze potentially unwanted side
effects that occur when inducing different biases, which affect
a large proportion of all web pages of a website.

II. RELATED WORK

The random surfer is a simple but well-established model,
which has already been extensively investigated by researchers
in the past [19], [31]. It also represents the basis for the
calculation of more complex node properties such as PageRank
[3], [20] or HITS [16]. The PageRank model includes a
parameter for the probability of the random surfer to teleport
to a different node. This parameter is also often referred to
as the damping factor α, which is the probability that the
random surfer continues to follow links at the current node.
Conversely, with probability 1−α the random surfer “jumps”
to a randomly selected node and continues traversing links
from there. Gleich et al. [10] empirically analyzed human click
trails and estimated that the damping factor is in range between
0.6 and 0.725 for the Web.

Researchers have also manipulated the random surfer by
applying different biases on the model to influence the link
selection process [6], [11], [14], [22]. In such cases, the links
are weighted and the link selection is not uniformly at random
any more. Instead, the link selection probability is proportional
to the link weights. Richardson et al. [23] used biased random
surfers in the field of information retrieval. In their work they
were able to outperform PageRank in terms of quality of
the results. Despite an increase in computational costs and
memory requirements, the authors argue that the algorithm is
still reasonably feasible for large-scale search engines.

Al-Saffar and Heileman [1] later compared personalized
and topic-sensitive PageRank with the original formula and
came to the conclusion that both ways of personalization
produce a considerable level of overlap in the top results.
The authors conclude that new biases, which should not

1 The framework is available as open source software at
https://github.com/floriangeigl/RandomSurfers

rely on the underlying link structure, are needed to improve
the personalization of modified PageRank algorithms. In this
paper we are not interested in improving the personalization
of a node ranking algorithm. Instead we want to broaden
our understanding of the effects of different biases on the
stationary distribution of a random surfer.

West and Leskovec [30] investigated human click trails
from a Wikipedia navigation game. Based on the results of
this study, they [29] designed different features for steering
a probabilistic random surfer. In their work they compared
paths produced by the biased random surfer with those of
humans. They found that human navigation was mostly based
on popularity and similarity of articles. To further investigate
this, we focus in this paper on the effects of popularity biases.

In 2013, Helic et al. [13] compared click trail characteristics
of stochastically biased random surfers with those of humans.
Their conclusion was that biased random surfers can serve
as valid models of human navigation. In our previous work,
we validated this finding by showing that the result vector
of PageRank and click data biased PageRank have a strong
correlation for the example of an online encyclopedia [7].

Regarding the number of pages which are effectively visited
by random surfers, Hwang et al. [15] investigated the proba-
bility of returning to the start node of random surfers in scale-
free networks. They found that this probability depends on
the degree of the starting node, and thus the total distribution
is similar to a power-law distribution. By investigating the
stationary distribution of the random surfer, we circumvent
this problem as the distribution is independent of the starting
point.

In previous work [8] we have investigated how biases
towards different subgroups of nodes influence the visit prob-
ability of the random surfer and how such biases compete
with link insertion. In this paper we extend our methodology
to allow for the simulation of biases based on structural
properties of nodes, expanding the arsenal of tools to analyze
the effects of biases on random surfers.

III. METHODOLOGY

First, we introduce a basic notion for random surfers on
a directed graph. Let W ∈ Rn×n be the adjacency matrix
of a directed graph with Wij = l where l is the number of
links that point from node j to node i (i.e., 0 if there are
no links). The out-degree k+i of a node i is defined as the
number of outgoing links, that is k+i =

∑n
j=1Wji. Further,

let D ∈ Rn×n be a diagonal matrix of weighted out-degrees
(i.e., dii = k+i ). Then the equation

P =WD−1 (1)

defines the transition matrix P with elements Pij equal to
the probability of a random surfer moving from node j to node
i.

If we think about nodes as states and links as transitions
between states, the transition matrix P defines a first-order
Markov chain. If a Markov chain is irreducible (i.e., any

https://github.com/floriangeigl/RandomSurfers


state can be reached from any other state with a non-zero
probability) and aperiodic (i.e., returns to all states occur at
irregular times), the chain has a unique stationary distribution
π. This distribution represents the probability of finding a
random surfer on a given node in the limit of large number
of steps. To ensure that the Markov chain P is irreducible we
only use the largest strongly connected component from our
datasets. On the other hand, a random walk on a connected
directed graph is aperiodic if and only if there is no integer
greater than 1 that divides the length of every cycle in the
graph. Thus, it suffices to show that there is at least one cycle
of length 2 and one cycle of length 3 in a directed graph for
it to be aperiodic. We find that in all our datasets.

An algebraic solution for the stationary distribution yields
π = Pπ. Thus, the stationary distribution is an eigenvector
of the transition matrix P , corresponding to the largest
eigenvalue 1. In related literature [2], [8], [17], the stationary
probability of a node is often referred to as the energy of
a node. As the random surfer is a conservative process [9],
the system total energy is constant and equals 1. However,
the distribution of energy over nodes is dependent on the link
selection process of the random surfer under investigation.
Inducing Bias. In practice, we can influence the link selection
process of users by, for example, repositioning links [18]. In
our analysis, we bias the random surfer by weighting links
in a given network to achieve similar effects. To that end,
we investigate different structural properties of nodes and
weight all links pointing towards nodes proportional to a given
structural property. For example, to induce a popularity bias
we weight links according to the popularity (i.e., degree) of
the target node.

Algebraically, we represent a bias as a diagonal matrix B ∈
Rn×n with node weights b ∈ Rn on its diagonal. Matrix W ′

is then the weighted adjacency matrix of the biased network,
which we calculate as the product of B and W :

W ′ = BW . (2)

Using the weighted out-degree diagonal matrix D′ of W ′

we calculate the corresponding biased transition matrix P ′ as:

P ′ =W ′D′−1 . (3)

As before, we have the stationary distribution satisfying the
right eigenvector equation (i.e., π′ = P ′π′), where we use
π′ to denote the stationary distribution of the biased random
surfer. Note that this methodology adapts and extends our
previous work [8]. However, in this paper we do not bias
towards groups of nodes but rather set the probability of
traversing a link proportional to structural properties of its
target node. Hence, all links of the network are affected by
the induced bias as opposed to our previous work, where only
links pointing towards selected nodes were affected. In practice
this would mean that we highlight each link proportional to a
property of the target page (e.g., popularity).

IV. EXPERIMENTAL SETUP

Website Coverage. In general, biases allow us to manipulate
the link selection process of random surfers and influence the

visit probabilities of specific nodes. To investigate the bias
effects on the effective number of visited pages (i.e., pages
with practically relevant visit probability) we calculate three
properties of the stationary distribution. First, we analyze the
visit probability of the most visited page of each website to
see and compare how likely the random surfer can be found
on just this single page. In all our datasets we find that the
most visited page is always the home page (i.e., main/entry
page) of the website. Second, we use the complementary
cumulative distribution function of the stationary distribution
(i.e., CCDF (π)) to determine the number of pages on which
the random surfer can be found with a probability higher
than 95%. Third, we analyze the entropy of the stationary
distribution H , which measures the uncertainty in the current
location of the random surfer. We calculate H as:

H = −
∑
i

πi log2 πi . (4)

Surfer Guidance. To analyze the dynamics of the link
selection process we calculate the entropy rate of the random
surfer. Entropy rate is the average entropy of all decisions
made by the random surfer in the limit of a large number of
steps. Thus, it measures average uncertainty in all the decisions
made by a random surfer. We calculate the entropy rate Hrate

as:
Hrate = −

∑
ij

πjPij log2 Pij . (5)

Note that the entropy of each node is weighted with the
corresponding value of the stationary distribution. Thus, the
uncertainty of the random surfer at a highly visited page has
a greater impact on the entropy rate than the one from a less
frequently visited page.
Web Page Response. To improve our understanding of
changes in the visit probabilities of the random surfer due
to different biases, we investigate how each individual page
is affected on a microscopic level. We do that by analyzing
heat maps which are based on log-scaled scatter plots between
stationary distributions of unbiased and biased random surfers.

V. BIASES

In this section we introduce the investigated biases and the
intuitions behind them.
Popularity Bias. With this bias we steer the random surfer
towards popular nodes. For example, in web shops operators
may want to increase visits (and thus potentially sales)
of frequently visited products. In encyclopedias and media
libraries, operators may have an interest in further increasing
the visibility of popular articles or movies. For popularity we
use the degree of web pages as a proxy and set bi = ki, where
ki is the total degree (in and out) of node i.
Unpopularity Bias. To dampen the natural attraction of
popular nodes we may want to induce an unpopularity bias.
As a web shop operator, this could be used in a strategy
to clear out stocks by increasing the visibility of unpopular
items. In encyclopedias or media libraries operators may
want to ease-up and diversify navigation to specific (mostly
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Fig. 1: In-Degree and Out-Degree Distributions of our Datasets. The Figure depicts the in-degree (top) and out-degree
(bottom) distributions of all datasets. The in-degree distributions are skewed towards few pages with a very large in-degree,
which is typical for webgraphs. In contrast, the out-degree distributions are more homogeneously distributed, except for the
Wikipedia datasets (WFS, BW). This is due to the way the websites are designed. In webshops (TG, GD and MS) and online
media libraries (ORF and DEM) most pages are similarly structured and thus contain roughly the same number of outgoing
links. On Wikipedia pages widely vary in their length, which is why the out-degree varies more strongly.

unpopular) pages and decrease the visibility of popular pages.
For unpopularity bias we use the inverse degree and set
bi = 1/ki for all i.
Eigenvector centrality. A bias proportional to eigenvector
centrality of a node has already been investigated by re-
searchers on unweighted, undirected networks [4], [5], [21],
[24]. In such networks the eigenvector centrality bias produces
the highest possible entropy rate [24]. Therefore, we include
this bias in our experiments as a baseline. Eigenvector cen-
trality is the right eigenvector of the adjacency matrix of a
network and satisfies Wv = κ1v, where W is the weighted
adjacency matrix of the network and κ1 the largest eigenvalue
of W . Thus, we introduce the eigenvector centrality bias by
setting bi = vi for all i.

VI. DATASETS

To simulate navigational biases “in the wild”, we have
crawled webgraphs of seven different websites. In particular,
we collected data from three web shops that deal with “geeky”
gadgets or board games (ThinkGeek2, GetDigital3 and Milan-
Spiele4), two online encyclopedias (Wikipedia for Schools5

and Bavarian Wikipedia6), as well as two online media
libraries (ORF TVThek7 and Das Erste Mediathek8). In the
remainder of the paper we will refer to the datasets using the
abbreviations of their names denoted in Table I. The degree
distribution of all datasets are depicted in Figure 1.

Concerning the crawling process itself, our web crawler
recursively extracted and followed all links, starting from the
main page of each website. Note that we did not fully render
each page individually, resulting in the omission of links
generated via (client-rendered) AJAX queries and Flash con-
tent. In a post-processing step we have removed self-loops—
links from a web page to itself. Further, we preprocessed and
removed links that coincide with several different redundant
2 http://www.thinkgeek.com 3 http://www.getdigital.eu
4 http://www.milan-spiele.de 5 http://schools-wikipedia.org/
6 https://bar.wikipedia.org 7 http://tvthek.orf.at/
8 http://mediathek.daserste.de/

TABLE I: Network Statistics. The table displays the basic
statistics of our datasets, with n being the number of nodes,
m the number of edges, and d the network diameter.

Dataset Category n m d

ThinkGeek (TG) web shop 3, 884 1, 002, 226 3
GetDigital (GD) web shop 8, 258 2, 101, 254 21
Milan-Spiele (MS) web shop 21, 566 3, 128, 693 70

Wikipedia for Schools (WFS) encyclopedia 6, 796 646, 646 4
Bavarian Wikipedia (BW) encyclopedia 32, 734 1, 324, 839 9

ORF TVThek (ORF) media library 9, 799 301, 844 10
Das Erste Mediathek (DEM) media library 70, 063 3, 448, 513 2274

actions, such as links containing ?sessid= or ?oCsid= for
session identifiers, action=review for displaying the “write
a review” box, as well as “add to shopping cart”, or “log-
in” personalized user account links and parameters. From the
cleaned datasets we constructed the corresponding webgraphs.

For the actual simulations we extracted the largest strongly
connected component of the network (i.e., the largest subset
of nodes in which every node can be reached from all other
nodes) so that the random surfer does not get stuck on pages
without outgoing links.

VII. RESULTS & DISCUSSION

A. Website Coverage

The left part of the Table II depicts the results for Website
Coverage. For almost all datasets the popularity biased random
surfer achieves (i) the highest probability of being on the home
page, (ii) the lowest number of nodes needed to reach an ag-
gregated energy of 95% and (iii) the lowest stationary entropy.
These results indicate a low website coverage, meaning that
with a high probability we will find the random surfer on just
a few nodes of the network. In other words, the random surfer
is trapped on just a few pages of the website. On the other
hand, we observe the opposite behavior for the unpopularity
biased random surfer (cf. Table II). These results follow our
intuition. We expect that in a network with an initially skewed
stationary distribution, where just a few top nodes possess

http://www.thinkgeek.com
http://www.getdigital.eu
http://www.milan-spiele.de
http://www.milan-spiele.de
http://schools-wikipedia.org/
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http://tvthek.orf.at/
http://mediathek.daserste.de/
http://www.thinkgeek.com
http://www.getdigital.eu
http://www.milan-spiele.de
http://schools-wikipedia.org/
https://bar.wikipedia.org
http://tvthek.orf.at/
http://mediathek.daserste.de/


TABLE II: Website Coverage and Surfer Guidance. Table II depicts the results of our experiments for all biases (columns)
and all datasets (rows). The highest values for each dataset in each of the four sections (i.e., Home page, 95%, Stationary
Entropy, and Entropy Rate) are highlighted in blue, and the lowest are marked in red. All three Website Coverage measurements
indicate that a popularity bias (pop.) decreases website coverage, whereas the unpopularity bias (unpop.) is able to increase it.
Hence, a bias towards popular pages traps the random surfer within a few pages, while the unpopularity bias allows random
surfers to effectively visit more pages. The Surfer Guidance is represented by the Entropy Rate, which is the uncertainty of the
random surfer when selecting a link to traverse. All biases are able to increase the certainty of the random surfer.Furthermore,
eigenvector centrality biases (e.c.) in directed networks do not produce the highest entropy rate in our datasets, which is caused
by the weak correlation between nodes in- and out-degrees.

Website Coverage Surfer Guidance

Home page 95% Stationary Entropy H Entropy Rate Hrate

unb. pop. unpop. unb. pop. unpop. unb. pop. unpop. unb. pop. unpop. e.c.

TG 0.01% 0.00% 0.01% 1547 (39.83%) 184 (4.74%) 2431 (62.59%) 8.78 7.16 10.66 7.64 6.86 6.41 6.76
GD 2.88% 5.82% 0.29% 177 (2.09%) 68 (0.80%) 1165 (13.74%) 6.86 5.40 9.93 6.38 5.31 5.01 5.35
MS 1.00% 1.17% 0.13% 599 (2.78%) 65 (0.30%) 4082 (18.93%) 7.94 5.99 11.32 6.11 5.61 4.02 5.67

WFS 3.13% 13.04% 0.09% 3229 (47.51%) 22 (0.32%) 4348 (63.98%) 9.65 4.79 12.01 5.61 4.24 4.68 4.16
BW 5.59% 21.62% 0.05% 4563 (13.94%) 23 (0.07%) 14751 (45.06%) 9.28 4.05 13.54 4.98 3.49 2.61 3.51

ORF 12.06% 36.00% 0.13% 1398 (14.27%) 11 (0.11%) 3321 (33.89%) 7.56 3.25 11.04 4.76 2.83 3.03 3.61
DEM 1.41% 1.94% 0.03% 446 (0.64%) 38 (0.05%) 2812 (4.01%) 7.55 5.11 10.75 5.60 4.63 1.94 5.15

an aggregated energy of almost 1, adding an additional bias
towards these top nodes increases the skewness. The more
skewed the distribution becomes, the likelier the random surfer
gets trapped within the most popular nodes. On the other hand,
a bias towards less popular nodes reduces the skewness of the
stationary distribution.
Findings & Implications. The popularity bias decreases the
website coverage, whereas the unpopularity bias is able to
increase it. To raise the effective website coverage we should
counteract the natural skewness of the stationary distribution
of a webgraph. We can achieve this by, for example, inducing
an unpopularity bias. Such a bias makes particularly sense in
the case of online encyclopedias, where users should be able
to easily explore the whole content of the website. However,
in cases in which website administrators want to reduce costs
(e.g., keep just a few movies on expensive, fast accessible
storage devices in media libraries such as ORF or DEM), a
bias towards popular web pages represents a suitable method.

B. Surfer Guidance

The second column of Table II (Surfer Guidance) depicts
the entropy rate of all combinations of datasets and biases.
We find that the unbiased random surfer consistently exhibits
the highest entropy rate across all datasets. This means that
the guidance (i.e., certainty in link-selection decisions) of this
surfer is low. Note that this is not the case in undirected,
unweighted networks, where the eigenvector centrality bias
generates the highest (maximum) entropy rates. Random
surfers biased by eigenvector centrality exhibit similar entropy
rates to the ones biased by popularity across all datasets
except for ORF and DEM. Across all tested biases we
achieve the lowest entropy rate for almost all datasets with
the unpopularity bias. As steering the random surfer towards
unpopular nodes decreases the average number of possible
next hops a lower entropy rate is to be expected. However, for

WFS the eigenvector centrality bias and for ORF the degree
bias result in the lowest entropy rates.

Both effects—lowest entropy rate for one of the two biases
towards popular nodes in WFS and ORF and the unobserved
maximum entropy rate of the eigenvector centrality bias—are
caused by specifics of webgraphs topologies. In particular, in
our datasets we do not observe a strong correlation between
in-degree and out-degree of a node. A possible explanation for
this behavior is based on a specific information architecture
on the Web and usability considerations. More specifically,
websites tend to have a few pages with many incoming links.
For example, on many websites all pages contain the website
logo on the top, which is linked to the home page. In all
our datasets we confirm this assumption by measuring an
unweighted in-degree of n − 1 for the home page, where n
is the number of pages of a website. On the other hand, the
majority of other pages have only a few incoming links. Thus,
there is a high variability in the number of incoming links. On
contrary, the number of outgoing links is much more stable
and in a typical cases limited due to usability reasons.

As a consequence of such network topology, the unbiased
random surfer often visits nodes with a high in-degree.
However, these nodes are often not the ones with the highest
out-degree (e.g., the home page of websites often contains only
very few outgoing links towards other very popular pages).
Consequently, the random surfer has to choose between a few
links only. This in turn keeps the uncertainty and the entropy
rate low.

Note that in the case of undirected networks the random
surfer often visits high-degree nodes, which bear decisions
with the highest number of possible outcomes, resulting in
highest entropy rates. To find further evidence in favor of our
hypothesis we biased the random surfer with node out-degree.
This experiment resulted in entropy rates higher than the one
of the unbiased random surfer in most datasets.



Findings & Implications. Both popularity and unpopularity
bias reduce the entropy rate and at the same time increase
certainty for random surfers on directed webgraphs. Con-
sequently, both biases can serve as a way to increase the
guidance throughout the website. This finding is in a stark
contrast to undirected networks where the popularity biases
increase the entropy rate.

C. Web Page Response

In this experiment we investigate the response of individual
pages to a bias. In the case of the popularity bias the majority
of pages yields a part of their energy to just a few top pages
(see Figure 2a and 2c). On the other hand, in the case of the
unpopularity bias we observe a flow of energy from the top
pages towards pages with a low initial energy (see Figure 2b
and 2d). For the popularity bias we observe a slightly left-
oriented v-shape in the scatter plots for some datasets (i.e.,
MS and DEM). This observation is particularly pronounced
for DEM (Figure 2c). In general, this means that pages with
a low initial energy (which are typically more distant to the
top pages) are less affected (relatively) by the bias than, for
example, pages with an average initial energy (which are closer
to the top pages). Note that we can only observe such v-shapes
for datasets with a very high (pseudo) diameter (cf. Table I).

In Figure 3a we plot the initial stationary distribution against
the one from the popularity biased random surfer. We mark top
pages as pages with an increased energy due to the induced
popularity bias (see top in Figure 3a). We then color nodes
based on their shortest distance to any of these top pages. The
figure shows that these distances have a decisive effect on the
biased page energy. A possible explanation for this behavior
is that the top pages exhaust energy from all other pages, that
is, the energy flows from all other pages towards top pages.
The strength of the flow seems to be inversely proportional to
the distance from the top nodes—the further away pages are
from the top pages, the smaller the flow of energy towards top
nodes. After a certain distance (i.e., 6 for DEM in Figure 3a)
some pages reach the lowest possible state of energy and fall
into a ground state (see ground state in Figure 3a). A page
in this ground state practically loses all of its energy and thus
its visit probability. The pages depicted around the low circle
in Figure 3b were able to minimally increase their energy (≈
10−20 in DEM). We attribute this negligible effect to numerical
inaccuracies.

To further analyze the energy flow in a network we group all
nodes according to their shortest distance from the top nodes
and calculate the energy as a function of this distance. We
introduce two new popularity biases. First a bias proportional
to square degree and second a bias proportional to square
root degree of a node. We assume that the flow of energy
towards top nodes must be the fastest in the case of the square
degree, followed by the degree bias and then by the square
root degree. In Figure 3b we see that all popularity biases
concentrate the energy on just a few nodes and hence result in
most of the other nodes falling into the ground state. We are
also able to confirm our energy flow assumption since the flow
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(d) DEM inverse degree

Fig. 2: Web Page Response. The heat maps depict the
absolute energy gains and losses of all nodes due to an induced
bias. The x-axes correspond to the unbiased energy of a node,
whereas the y-axes denote the biased energy. Color refers to
the number of nodes observed in that area. The white dashed
diagonal marks perfect correlation (i.e., the energy of nodes
on this line did not change). For the TG dataset (top) all biases
result in the expected change of the stationary distribution. A
popularity bias increases the energy of popular nodes while it
decreases the energy of all other nodes. The opposite is true
for the unpopularity bias. However, in some datasets, such as
DEM (bottom row), we can see a slightly left-oriented v-shape,
where nodes with average initial energies are most affected
(relatively) by the bias in the form of decreased energy.

is strongest for the square degree (the nodes at distance 4 fall
into the ground state), followed by the degree bias (the ground
state is reached at distance 6). The square root and inverse
degree distribute the energy more uniformly over distances
(the ground state is reached at distance 8).

To get a better understanding of practical implications of
these results we also calculate the expected browsing session
length using empirically measured damping factors (i.e., 0.6 ≤
α ≤ 0.725 [10]). In particular, we can model session length
as a random variable following geometric distribution with
the parameter 1−α. The expected session length equals then
to α/(1 − α). Using empirical damping factors the expected
session length lies between 1.5 and 2.64 clicks. Assuming that
users start browsing on the home page of a website, the pages
that they are expected to visit are within the distance of the
expected session length. We mark the range of the expected
session length as vertical lines in Figure 3b. Only pages that
are at distance shorter then the expected session length and
have a practically relevant stationary probability can be visited
by users. Pages that are further away or are close but are fallen
to the ground state will not be visited. Thus, in practice we
may be able to increase the visibility of, for example, popular
pages but because of a fast energy flow many other pages
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Fig. 3: DEM Energy Concentration. These plots describe how energy diffuses when a bias is induced. The left plot depicts
the stationary distribution of the unbiased random surfer (x-axis) against the one of the popularity biased random surfer (y-
axis). We mark pages which increased their energy due to the bias as top pages and color each page based on its shortest
distance from any of the top pages. All pages further away than 6 hops from top pages slide into the ground state of the
system—meaning that they will almost never be visited by the random surfer. The minimal increase in energy (≈ 10−20) of
pages marked as low is likely caused by numerical inaccuracies. The right plot depicts groups of pages based on their shortest
distance from top pages (x-axis) and their aggregated energy (left y-axis). Additionally, we show the fraction of pages (right
y-axis; dashed black line with stars) for each distance and the range of expected sessions lengths based on the damping factors
α. The colored areas refer to the probability of users reaching nodes of a certain distance, if they start navigating from the
home page (i.e., green: very likely, yellow: likely and red: unlikely). We see that, due to the unpopularity bias, a large amount
of energy diffuses towards pages being 2 to 3 hops away from top pages. In contrast, all popularity biases (i.e., degree,

√
degree

and degree2) concentrate the energy on just a few pages while pushing many other pages into the ground state. This means
that small increases in energy of the top pages lead to many other pages being pushed into the ground state.

will practically become invisible to users. Therefore, biasing
link selection process includes a trade off between desirable
outcomes and (possibly) unwanted side effects.

Specifically, in Figure 3b the upper left area (i.e., aggregated
energy higher than 10−3 and distance from top nodes smaller
than 3) is the most interesting one for a website administrator.
Pages in that area have a reasonable probability to be visited
while not being too far away from the home page. Website ad-
ministrators can now utilize our methodology to test different
biases and identify the one that best meets their requirements.
For example, if the aim is to keep visitors of DEM close to the
top pages but still enable them to easily explore other pages
up to a distance of 2, the squared degree bias would exactly
fulfill these requirements (cf. Figure 3b).

Please note that in all our calculations the values for the
damping factors that we used apply for the general Web and
may not hold for a particular website. However, for a given
website the operators can determine the damping factors from
the actual log-files.
Findings & Implications. Due to a popularity bias some
nodes slide into a ground state in which they are almost
never visited by the random surfer. The distance from top
nodes determines the final energy of a node. Contrary, the

unpopularity bias increases the flow of energy towards nodes
with an initially very low energy. This means that an induced
popularity bias increases the visibility of already frequently
visited nodes and at the same time it shifts many other
pages into the ground state. Pages in that state will be hardly
visited. If the aim of a website is to be easily explorable (e.g.
Wikipedia datasets WFS and BW) this should be taken into
account. The same applies for web shops, such as MS, for
which administrators might expect to increase sales of the
top products by inducing a popularity bias. However, this will
only increase the visits of popular pages—which we find to
be mostly overview pages such as games for 5 players 9—
while putting many actual product pages into the ground state.
Nevertheless, taking into account the expected session length
of users, it can make sense to concentrate their attention on
the top nodes, as they are unlikely to visit nodes further away
from the home page.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach for measuring the
impact of and between biased random surfers and applied it

9 http://www.milan-spiele.de/nach-anzahl-fuenf-spieler-c-93 98.html

http://www.milan-spiele.de/nach-anzahl-fuenf-spieler-c-93_98.html


to seven empirical datasets to highlight practical implications
for different kinds of networks.

The results gathered from our experiments broaden our
understanding of the impact of intrinsic biases for the random
surfer on directed webgraphs. Additionally, we found that
some combinations of measures and biases (e.g., penalization
of popular pages decreases the probability of trapping the
random surfer) perform consistently over all datasets. On the
other hand, some results highly vary across experiments (e.g.,
the entropy rate of some biases depend on the structure of the
network).

Regarding the Website Coverage, we conclude that all used
biases highly influence visit probabilities of the random surfer.
In particular, we find a consistent pattern based on the type
of the bias: Popularity biases tend to trap the random surfer
within just a few web pages of the website, whereas biases
penalizing popular pages are able to increase website coverage.

The changes in Surfer Guidance, due to different biases, are
more dependent on the network structure than on the type of
the bias itself. However, all biases were able to decrease the
entropy rate, which further indicates an increase in guidance.

For the Web Page Response, in networks with a large
diameter we observed a strong side effect. Specifically, the
bias puts many pages into a so-called ground state. Pages in
that state are barely visited by the random surfer. Thus, website
administrators should take these side effects into account.

For future work we plan on analyzing the influence of
similarity-based as well as extrinsic biases on random surfers,
such as text similarity or categorical mappings between articles
(encyclopedias) or products (web shops). Further, we are
interested in coloring nodes regarding their type (e.g., product
pages, administration pages, types/categories of article pages)
and analyzing which type of nodes are favored by different
types of biases.
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