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Abstract

Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the
National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing
information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased
in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development
by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of
death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single
individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale
efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even
hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable
us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering
projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different
biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction
patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-
engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify
commonalities and differences between different projects that have implications for project managers, ontology editors, developers
and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain.

Keywords: Collaborative ontology engineering; Markov chains; sequential patterns; collaboration; ontology-engineering tool;
user interface

1. Introduction

Today, biomedical ontologies play a critical role in acquir-
ing, representing and processing information about human health.
For example, the International Classification of Diseases (ICD)
is a taxonomy that is used in more than 100 countries to en-
code patient diseases, to compile health-related statistics and
to collect health-related spending statistics. Similarly, the Na-
tional Cancer Institute’s Thesaurus (NCIt) represents an impor-
tant OWL-based vocabulary for classifying cancer and cancer-
related terms.

With their increase in relevance, biomedical taxonomies,
thesauri and ontologies have also significantly increased in size
to cover new findings and to extend and complement their orig-
inal areas of application. For example, the 11th revision of
the International Classification of Diseases (ICD-11), currently
under active development by the World Health Organization
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(WHO), consists of nearly 50, 000 classes representing a vast
variety of different diseases and causes of death. In contrast
to previous revisions, the foundation component of ICD-11 is
implemented as an OWL ontology with a broader scope than
previous ICD revisions.

This growth was accompanied by a need to adapt the way
these ontologies are engineered as no single individual or small
group of domain experts have the expertise to develop such
large-scale ontologies. New tools and processes have to be de-
veloped in order to coordinate, augment and manage collabo-
ration between the dozens or hundreds of experts, practitioners
and stakeholders when engineering an ontology.

Understanding the ways in which such a large number of
participants – e.g., more than 100 experts contribute to ICD-
11 – collaborate with one another when creating a structured
knowledge representation is a prerequisite for quality control
and effective tool support.

Objectives: Consequently, we aim at understanding how
large collaborative ontology-engineering projects such as ICD-
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11 unfold. In particular, we want to investigate if we can iden-
tify usage patterns in the change-logs of collaborative ontology-
engineering projects? We approach this problem by analyzing
patterns in usage logs of five biomedical ontology-engineering
projects of varying sizes and scopes. For this analysis we em-
ploy Markov chain models for investigating and modeling se-
quential interaction paths (c.f. Section 3.2). Such paths are rep-
resented by chronologically ordered lists of interactions within
the underlying ontology for (a) a single user or (b) a single class
(see Figure 2). For example, we study sequences of properties
that were either changed by (a) a single user on any class or
(b) a single class by any user in an ontology over time. For
example, as depicted in Figure 2, a sequential property path for
a single user (user-based) consists of a chronologically ordered
list of all properties (e.g., title, definition etc.), which have been
changed by that user on any class, while a sequential property
path for a single class (class-based) consists of a chronologi-
cally ordered list of properties that were changed on that class
by any user. Instead of only modeling sequences for single
users or classes, our data contains a set of paths; e.g., each path
in the dataset consists of sequences of properties whose value
has been changed by a single user over time. This allows us to
tap into accumulated patterns. Concretely, we are interested in
studying emerging patterns of subsequent steps in such sequen-
tial paths – e.g., which properties do users frequently change
after a specific given property.

The analyzed datasets range from large-scale datasets such
as ICD-11 to smaller ones such as the Ontology for Parasite
Lifecycle (OPL). Given the differences of our datasets in a num-
ber of salient characteristics, we investigate if specific patterns
can be found across all or only in certain biomedical ontology-
engineering projects. Furthermore, we investigate and discuss
features of these projects that potentially affect observed pat-
terns, which can only be found in specific datasets. This anal-
ysis can be seen as a stepping stone for collaborative ontology-
engineering project managers to devise infrastructures and tool
support to augment collaborative ontology engineering.

Contributions: We present new insights on social interac-
tions and editing patterns that suggest that large collaborative
ontology-engineering projects are governed by a few general
principles that determine and drive development. Specifically,
our results indicate that general edit patterns can be found in
all investigated datasets, even though they (i) represent differ-
ent projects with different goals, (ii) use variations of the same
ontology-editors and tools for the engineering process and (iii)
differ in the way the projects are coordinated.

To the best of our knowledge, the work presented in this pa-
per represents the most fine-grained and comprehensive study
of patterns in large-scale collaborative ontology-engineering projects
in the domain of biomedicine. In addition, our analysis is con-
ducted across five datasets of different sizes, which have been
developed using different versions of Collaborative Protégé (Ta-
ble 1).

2. Collaborative ontology engineering

According to Gruber [1], Borst [2], Studer et al. [3] an on-
tology is an explicit specification of a shared conceptualization.
In particular, this definition refers to a machine-readable con-
struct (the formalization) that represents an abstraction of the
real world (the shared conceptualization), which is especially
important in the field of computer science as it allows a com-
puter (among other things) to “understand” relationships be-
tween entities and objects that are modeled in an ontology.

Collaborative ontology engineering is a new field of research
with many new problems, risks and challenges that we must
first identify and then address. In general, contributors of col-
laborative ontology-engineering projects, similar to traditional
collaborative online production systems1 (e.g., Wikipedia), en-
gage remotely (e.g., via the internet or a client–server archi-
tecture) in the development process to create and maintain an
ontology. As an ontology represents a formalized and abstract
representation of a specific domain, disagreements between au-
thors on certain subjects can occur. Similar to face-to-face meet-
ings, these collaborative ontology-engineering projects need tools
that augment collaboration and help contributors in reaching
consensus when modeling topics of the real world.

Indeed, the majority of the literature about collaborative
ontology engineering sets its focus on surveying, finding and
defining requirements for the tools used in these projects [4, 5].

The Semantic Web community has developed a number of
tools aimed at supporting the collaborative development of on-
tologies. For example, Semantic MediaWikis [6] and its deriva-
tives [7, 8, 9] add semantic, ontology modeling and collabora-
tive features to traditional MediaWiki systems.

Protégé, and its extensions for collaborative development,
such as WebProtégé and iCAT [10] (see Figure 1 for a screen-
shot of the iCAT ontology-editor interface) are prominent stand-
alone tools that are used by a large community worldwide to
develop ontologies in a variety of different projects. Both Web-
Protégé and Collaborative Protégé provide a robust and scalable
environment for collaboration and are used in several large-
scale projects, including the development of ICD-11 [11].

Pöschko et al. [12] and Walk et al. [13] have created Prag-
matiX, a tool to visualize and analyze a collaboratively engi-
neered ontology and aspects of its history and the engineering
process, providing quantitative insights into the ongoing collab-
orative development processes.

Falconer et al. [14] investigated the change-logs of collabo-
rative ontology-engineering projects, showing that users exhibit
specific roles, which can be used to group and classify users,
when contributing to the ontology. Pesquita and Couto [15] in-
vestigated whether the location and specific structural features
can be used to determine if and where the next change is going
to occur in the Gene Ontology2.

1Note that the term traditional online production systems refers to online
platforms that have users collaborate in engineering digital goods, opposed
to a structured knowledge base that is the result of collaborative ontology-
engineering.

2http://www.geneontology.org
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Figure 1: A screenshot of iCAT, a custom tailored, web-based version of WebProtégé, developed for the collaborative engineering of ICD-11. The left part of the
interface visualizes the ICD-11 class hierarchy, the class titles, the number of annotations each class has received (speech bubbles) and its overall progress (color
and symbol before the class title). The right part of the interface shows the different user-interface sections (e.g, Title & Definition or Classification Properties),
listing all properties and property values for each class.

Goncalves et. al [16, 17, 18] performed an analysis of differ-
ent versions of ontologies by applying and categorizing Diff al-
gorithms, with the goal of categorizing the differences between
consecutive and chronologically ordered versions of the ontolo-
gies. Furthermore, they conducted reasoner performance tests
and identified factors that potentially increase reasoner perfor-
mance. For the analysis presented in this paper we were able to
rely on ChAO [19], which is a change-log provided by Protégé
and its derivatives that already provides us with detailed and
unambiguous logs of changes for the investigated ontologies.

In a similar context Grau et al. [20, 21] proposed a logi-
cal framework for modularity of ontologies and a definition of
what is to be considered as an ontology module. In general,
an ontology module can be used to extract the meaning of a
specified set of terms from an ontology. Extracting the right
amount of information is especially important for the topic of
ontology reuse. According to Grau et al. modularity also rep-
resents a crucial factor in collaborative ontology-engineering
environments as modular representations of ontologies are eas-
ier to understand, to extend and to reuse, similar to modularity
in software engineering projects.

Mikroyannidi et al. [22] investigated the detection and use
of (design) patterns in the content of an ontology, using a clus-
tering approach. In contrast to Mikroyannidi et al., our analy-
sis focuses on the detection of sequential patterns in interaction
data rather than content.

Strohmaier et al. [23] investigated the hidden social dy-
namics that take place in collaborative ontology-engineering
projects from the biomedical domain and provides new met-
rics to quantify various aspects of the collaborative engineering
processes. Wang et al. [24] have used association-rule min-
ing to analyze user editing patterns in collaborative ontology-
engineering projects. The approach presented in this paper uses

Markov chains to extract much more fine grained user-interaction
patterns incorporating a variable number of historic editing in-
formation.

The only requirement to perform the pattern analysis that
we present in this paper is the availability of a structured log of
changes that can be mapped to the underlying ontology. The
majority of the discussed collaborative ontology-engineering
environments provide such a log, allowing for a similar analy-
sis. For example, the Semantic MediaWikis store all the changes
to the articles, and thus the ontology, allowing to expand the
application of Markov chains to analyze sequential patterns as
shown in this paper.

3. Materials & methods

For the analysis conducted in this paper we concentrated our
efforts on five ontology-engineering projects in the biomedical
domain. Each of the projects (i) has at least two users who con-
tributed to the project, (ii) provides a structured log of changes
and (iii) represents knowledge from the biomedical domain. In
Section 3.1 we provide a brief history for each dataset and in
Section 3.2 we describe the sequential path analysis. To aid
readers in understanding the analyses conducted in this paper
and its implications we provide a very brief overview of Markov
chains and the involved model selection methodology in Sec-
tion 3.3.

3.1. Datasets

Table 1 lists the detailed features and observation periods
for the following five datasets that we used in our analysis. All
datasets have been created either with WebProtégé or special
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Table 1: Detailed information of the datasets used for the sequential pattern analysis to extract beaten paths in collaborative ontology-engineering projects.
ICD-11 ICTM NCIt BRO OPL

Ontology
classes 48,771 1,506 102,865 528 393
changes 439,229 67,522 294,471 2,507 1,993
DL expressivity SHOIN(D) SHOIN(D) SH SHIF (D) SHOIF

Editor tool iCAT iCAT-TM Collaborative Protégé WebProtégé Collaborative Protégé

Users users 109 27 17 5 3
bots (changes) 1 (935) 1 (1) 0 (0) 0 (0) 0 (0)

Duration first change 18.11.2009 02.02.2011 01.06.2010 12.02.2010 09.06.2011
last change 29.08.2013 17.7.2013 19.08.2013 06.03.2010 23.09.2011
observation period (ca.) 4 years 2.5 years 3 years 1 month 3 months

versions of WebProtégé. To be able to conduct the pattern de-
tection analysis for a different dataset, there is only one require-
ment that needs to be satisfied: The availability of a change-log
that can be mapped onto the ontology so that changes can be
associated with users and classes without ambiguity.

The DL expressivity [25, 26] of the five datasets is added to
Table 1 to highlight that the investigated ontologies exhibit dif-
ferent strategies regarding their OWL-DL expressivity. As all
levels of expressivity shown in Table 1 allow for the definition
and assignment of properties and classes, they do not influence
the conducted pattern detection analyses. Also, in the case of
WebProtégé and its derivatives, the data used for the pattern de-
tection analysis can be extracted from the change-logs, allowing
us to prevent parsing and extracting values from OWL directly.

The International Classification of Diseases (ICD)3 is the
international standard for diagnostic classification used to en-
code information relevant to epidemiology, health management,
and clinical use in over 100 United Nations countries. The
World Health Organization (WHO) develops ICD, and pub-
lishes new revisions of the classification every decade or more.
The current revision in use is ICD-10, a taxonomy that contains
over 15, 000 classes. The 11th revision of ICD,4 ICD-11, is cur-
rently taking place and brings two major changes with respect
to previous revisions. First, ICD-11’s foundation component is
developed as an OWL ontology using a much richer represen-
tation formalism than previous revisions. ICD-11 contains very
detailed descriptions of several aspects of diseases, mostly rep-
resented as properties in the ontology. Second, the development
of ICD-11 takes place in a Web-based collaborative environ-
ment, called iCAT (see Figure 1), which allows domain experts
around the world to contribute and review the ontology online.
ICD-11 is planned to be finalized in May 2017.

The International Classification of Traditional Medicine
(ICTM) is a WHO led project that aimed to produce an inter-
national standard terminology and classification for diagnoses
and interventions in Traditional Medicine.5 ICTM, similarly to
ICD-11, is implements an OWL based ontology as foundation
component, which tries to unify the knowledge from the tradi-
tional medicine practices from China, Japan and Korea. Its con-
tent is authored in 4 languages: English, Chinese, Japanese and
Korean. More than 20 domain experts from the three countries

3http://www.who.int/classifications/icd/en/
4http://www.who.int/classifications/icd/ICDRevision/
5http://tinyurl.com/ictmbulletin

developed ICTM using a customized version of the iCAT sys-
tem, called iCAT-TM. The development of ICTM was stopped
in 2012, and a subset of ICTM is also included as a branch in
the ICD-11 ontology.6

The National Cancer Institute’s Thesaurus (NCIt) [27]
has over 100, 000 classes and has been in development for more
than a decade. It is a reference vocabulary covering areas for
clinical care, translational, basic research, and cancer biology.
A multidisciplinary team of editors works to edit and update
the terminology based on their respective areas of expertise,
following a well-defined workflow. A lead editor reviews all
changes made by the editors. The lead editor accepts or re-
jects the changes and publishes a new version of the NCI The-
saurus. The NCI Thesaurus is , at its core, an OWL ontology,
which uses many OWL primitives such as defined classes and
restrictions. It was named thesaurus due to historical reasons,
however fully conforms to OWL semantics, thus represents an
actual ontology.

The Biomedical Resource Ontology (BRO) originated in
the Biositemaps project,7 an initiative of the Biositemaps Work-
ing Group of the NIH National Centers for Biomedical Com-
puting [28]. Biositemaps is a mechanism for researchers work-
ing in biomedicine to publish metadata about biomedical data,
tools, and services. Applications can then aggregate this infor-
mation for tasks such as semantic search. BRO is the enabling
technology used in Biositemaps; a controlled terminology for
describing the resource types, areas of research, and activity of
a biomedical related resource. BRO was developed by a small
group of editors, who use a Web-based interface (WebProtégé)
to modify the ontology and to carry out discussions to reach
consensus on their modeling choices.

The Ontology for Parasite Lifecycle (OPL) models the
life cycle of the T.cruzi, a protozoan parasite, which is respon-
sible for a number of human diseases. OPL is an OWL ontol-
ogy that extends several other OWL ontologies. It uses many
OWL constructs such as restrictions and defined classes. Sev-
eral users from different institutions collaborate on OPL devel-
opment. This ontology is much smaller and has far fewer users
than NCIt, ICD-11, or ICTM.

6The ICD-11 dataset used in our analysis did not include the ICTM branch.
7http://biositemaps.ncbcs.org
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3.2. Sequential interaction paths

For our sequential pattern analysis we analyze three differ-
ent kinds of paths, which all represent interactions with the
underlying ontology. A sequential path is represented by the
chronologically ordered list of extracted interactions for either
a single user or a single class (see Figure 2). For example, a se-
quential property path for a single user (user-based) consists of
a chronologically ordered list of all properties (e.g., title, defi-
nition etc.), which have been changed by that user on any class,
while a sequential property path for a single class (class-based)
consists of a chronologically ordered list of properties that were
changed on that class by any user.

U P2 P3 P1

C P3P2P2P1:

:

Figure 2: The top row of the figure depicts an exemplary class-based sequential
property path (P1 to P3) for class C. This means that for class C the property
P1 was changed first, then property P2 and most recently changed was property
P3. The bottom row of the figure depicts the sequential property path (P1 to
P3), however this time for a user U (user-based). Analogously, user U has first
changed P2, continued to change property P3 and most recently changed P1.

User-sequence paths: First, we analyze activity patterns
within the collaborative ontology-engineering project. This means
that we analyze sequences of users who change a class. We
want to detect and describe the different sequential patterns (the
structure) that can be extracted from the change-logs of the in-
vestigated collaborative ontology-engineering projects.

Structural paths: Analogously to the User-Sequence Paths,
we investigate edit-strategies, such as bottom-up or top-down
development, that users follow. Is it possible to detect common
patterns of which depth level a user frequently contributes to
after a given current depth level? In addition to development-
strategies, we look at the relationships (e.g., parent, child, sib-
ling, etc.) between the current and the next class a user is going
to contribute to.

Property paths: On a content-based level, we investigate
the series of property-changes users perform on. In particu-
lar, we want to identify common successive property-changes –
i.e., which properties users (user-based) regularly change con-
secutively and which properties are changed back-to-back for
classes (class-based).

3.3. Markov chain models

For the analysis conducted in this paper we are adopting the
methodology presented by Singer et al. [29] and mapped to col-
laborative ontology-engineering change logs by Walk et al. [30]
to detect sequential patterns identified in and extracted from
change-logs of collaborative ontology-engineering projects.

For a better understanding of the collected results, we will
provide a short description of Markov chains. For an in-depth
description of our methodology we point to Singer et al. [29],
Walk et al. [30].

In general, Markov chain models are used for stochasti-
cally modeling transitions between states on a given state space.
In our case, a Markov chain consists of a finite state-space
(e.g., properties that a user edits over time; see Section 3.2)
and the corresponding transition probabilities (e.g., the prob-
ability of changing property j after property i) between these
states. Markov chain models are usually described as memo-
ryless which means that the next state in a sequences only de-
pends on the current one and not on a sequence of preceding
ones (also known as Markovian property). Hence, this property
defines serial dependence between adjacent nodes in trajecto-
ries – this is where the term ”chain” comes from. Such a model
is usually called a first-order or memoryless model.

As we are interested in modeling sequential interaction paths
of collaborative ontology-engineering projects (see Section 3.2),
we fit a Markov chain model on such sequences D = (x1, x2, ..., xn)
with states from a finite set S . Then, we can write the Marko-
vian property as:

P(xn+1|x1, x2, ..., xn) = P(xn+1|xn) (1)

After the model fitting on the data, a Markov chain model
is usually represented via a stochastic transition matrix P with
elements pi j = P(x j|xi) where it holds that for all i:∑

j

pi j = 1 (2)

For our analysis, we will make use of these transition prob-
abilities to identify likely transitions for a variety of different
states.8 For example, if we fit the Markov chain model on se-
quential property paths for users (see Section 3.2), element pi j

of the transition matrix would tell us the probability that users
change property j right after i (e.g., in 60% of all cases). By
now, e.g., looking for the highest transition probabilities from
state i to all other states of S , we can identify potential high-
frequent patterns in our data.

4. Results

4.1. User-sequence paths

In the User-Sequence Paths analysis we investigate patterns
emerging when looking at sequences of users who contribute to
a class of an ontology. Hence, given a sequence of n contrib-
utors for a class over time, we identify consecutive users who
edit the class (e.g., user Y frequently contribute to a class after
user X).

Analyzing the chronologically ordered list of contributors
for each class of the five investigated datasets provides the nec-
essary information to identify users who perform changes on
classes after (or before) other users. Note that this analysis
on its own, without regarding additional factors, such as the

8Note that throughout this article we usually refer to the entities modeled
(i.e., interactions) instead of states. However, we speak about transition prob-
abilities between these entities as we derive them directly from the resulting
model transition matrix.
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(a) International Classification of Diseases
(ICD-11)
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(b) International Classification of Traditional
Medicine (ICTM)
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(c) National Cancer Institute Thesaurus (NCIt)
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(d) Biomedical Resource Ontology (BRO)
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(e) Ontology for Parasite Lifecycle (OPL)

Figure 3: Results for the User-Sequence Paths analysis: The columns and rows of the transition maps (bottom area of Figures 3(a) to 3(e)) represent the
transition-probabilities between the users of each dataset for a first-order Markov chain, where rows are source users and columns are target users. A sequence
(or transition-probability) is always read from row to column. Darker colors represent higher transition-probabilities while lighter colors indicate lesser transition-
probabilities. Absolute probability values are dependent on the number of investigated rows and columns, hence relative differences are of greater importance. Darker
colored columns identify gardeners, a contributor focused on pruning ontology classes and fixing syntactical errors. The histograms (top area of Figures 3(a) to
3(e)) show the number of changes performed by each user (again for a first-order Markov chain) within the five ontologies in alphabetical order. Note, that the
y-axes for all histograms are scaled differently for each dataset. All datasets have a few users who contributed the majority of changes, while the rest of the users
(the long-tail) only contributed a very small number of changes. Note that the transition-probabilities depicted in the transition maps are relative numbers for each
column and row individually. The sum of all transition probabilities for one row in the transition maps is 1. For example, if User 1 exhibits a transition probability
of 0.30 to another User 2 it means that User 2 has a 30% probability of changing a class after User 1. Thus, an inspection of the transition maps and histograms is
necessary for proper interpretation. To increase readability we have removed users from the plots who have contributed only a very limited number of changes for
ICD-11, ICTM and NCIt.

6



changed property or the performed change-action, does not pro-
vide information about actual collaboration. The results of this
analysis could be used to potentially identify users who work
on the same classes, however, we do not know if they actually
collaborate with or just clean up (i.e., a gardener, a contribu-
tor focused on pruning ontology classes and fixing syntactical
errors) after other users.

Path & model description: To analyze user sequences, we
iterated over each class of our datasets and extracted a chrono-
logically ordered list of contributors. For example, a given path
for a given class can look like the following: User A, User B,
User B, User C. As we are interested in uncovering patterns of
distinct users, we merged multiple consecutive changes by the
same user into a single change – our previous example would
then unfold into: User A, User B, User C. By doing so we
remove biases emerging when one single user consecutively
changes the same class over and over as this may result in un-
reasonable high transition probabilities between equal users.

We fit a first-order Markov chain model on this set of paths,
where each path represents a single class of the ontology and
each element of a path constitutes a change by a single user on
the class. The resulting transition probabilities between users
then e.g., tell us the probability that User B changed a class af-
ter User A. Hence, they give us thorough insights into frequent
consecutive user patterns that emerge when looking at which
users contribute to classes in an ontology. Due to reasons of
privacy we obfuscated the usernames and replaced them with
generic names.

Results: When investigating the transition probabilities (rep-
resenting a Markov chain of first order) between contributors
(see bottom area of Figures 3(a) to 3(e)) we can identify very
active users by looking at darker colored columns of the tran-
sition maps. Note that these darker colored columns can also
be used to identify gardeners, a contributor focused on prun-
ing ontology classes and fixing syntactical errors. As we have
merged all consecutive changes of the same user into one single
change, the diagonal, representing the transition probabilities
between the same users, is 0. The absolute transition proba-
bilities, depicted next to each transition map, are dependent on
the absolute amount of observations and users, thus are to be
interpreted relatively to each other for each row individually.
When looking at the probabilities between the three most ac-
tive users (being users 66, 45 and 47), and all corresponding
target users in ICD-11 we can see that the probabilities are very
evenly distributed among them. Meaning that, when investi-
gating the rows (From User) that correspond to the top three
most active users, probabilities to all target users (To User) are
very evenly distributed, with very minor exceptions. This in-
dicates that users who contribute many changes to ICD-11 are
not followed by specific other contributors, but exhibit an even
distribution of users that edited a class after them. Nonetheless,
we can clearly identify User 66 to be the most likely user that
edits a class after nearly all other users. This suggests, that User
66 may represent a gardener, a contributor focused on pruning
ontology classes and fixing syntactical errors, in ICD-11.

For NCIt we can clearly observe that User 7 appears to be
a gardener, who is checking all the changes contributed by all

other users. For BRO Users 2 and 5 are prominent target users,
evident in the high transition probabilities as To User (dark
columns) – i.e., they frequently edit a class after other users do.
Interestingly, the user with the highest number of changes (User
1) exhibits very low and evenly distributed transition proba-
bilities (row) and is not necessarily the user that most likely
changes a class after another users. This shows us that there
does not need to be a necessary connection between the overall
activity of users and their activity as a gardener. This could also
mean that User 1 is possibly working independently from the
other users in BRO, or that User 1 is a domain specialist and
all other users only change concepts that have not been worked
on by that specialist. However, further investigations in future
work are required to confirm this observation as our Markov
chain analysis is not able to determine this kind of distinction.
For OPL we can observe that User 3 frequently changes the
same classes after User 2. A similar observation can be made
for Users 1 and 2. However, one has to keep in mind that User 1
has contributed a limited number of changes, rendering the ob-
served transition probabilities less useful as they rarely occur.

The histograms (see top area of Figures 3(a) to 3(e)) in-
dicate that a small number of users contribute the majority of
changes (similar to a long-tail distribution). However, this ap-
pears to be more dominant for specific ontologies compared
to others. In order to measure the inequality among contribu-
tions of changes to a specific ontology by users, we analyzed
the Normalized Entropy9, which is determined by calculating
the Shannon Entropy and normalizing the entropy by dividing
by the logarithm of the length (i.e., number of users) of a dis-
tribution. This coefficient measures the statistical dispersion
of a distribution – i.e., the coefficient is one if all users con-
tributed equally to the ontology, while it is zero in case of total
inequality where a single user conducts all changes. The re-
sults indicate that ICD-11 (0.55) exhibits a low entropy value,
i.e., the changes are dominated by only a few users. For NCIt
(0.61), OPL (0.64) and ICTM (0.68) we receive medium nor-
malized entropies indicating a more democratic contribution to
the ontology by users. A high entropy can be observed for BRO
(0.81), which indicates that it is a demographically edited on-
tology – even though there are only five users.10

Interpretation & practical implications: The transition
probabilities for a first-order Markov chain unveil the roles of
certain users and can help to identify users or even groups of
users who frequently change the same classes. Users that fre-
quently change classes after other users (i.e., exhibit high tran-
sition probabilities in their columns) were identified by us as ac-
tual gardeners, curators and administrators of the corresponding
projects. If certain users always change the same classes after
specific other users, it could be worthwhile for project admin-
istrators to investigate if these users are actually collaborating,
for example by looking at the changed properties and property

9Additionally, we calculated the Gini Coefficient for each distribution con-
firming the results presented here.

10Note that we do not necessarily know whether the differences between
these distributions are statistically significant as we are mainly interested in
the behavior of single distributions.
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values, or if a single user is always cleaning up after the other
user. In all datasets we were able to observe at least one user
who contributed a high number of changes, with evenly dis-
tributed transition probabilities to all remaining users. This ob-
servation indicates that in all projects, gardeners, curators and
administrators are assigned (directly or indirectly) certain parts
of the ontology; otherwise the transition probabilities between
the very active users would be higher.

The ability of understanding who is most likely going to
change a specific class next, as well as the classes that a user
is most likely to change next could be used by project adminis-
trators to help users in finding and identifying classes (and thus
work) of interest. On the other hand, the information about the
next, most probable contributor for a class, can even be used to
create automatic class recommender systems to suggest work
to users, which could help to increase participation. However,
these two analyses are beyond the scope of this paper and are
therefore subject to future work. In particular for projects the
size of ICD-11 and NCIt, mechanisms to automatically iden-
tify and assign work are highly useful as it is still very time-
consuming to find pending work and users with the necessary
knowledge to address the identified work-tasks.

4.2. Structural paths
The investigation of Structural Paths involves an analysis

of different aspects regarding how and where users contribute
to the ontology, such as the depth level of the class that users
contribute to next (Section 4.2.1) as well as looking at the rela-
tionship distances between consecutively changed classes (Sec-
tion 4.2.2).

4.2.1. Depth-level paths
In this analysis, we investigate if users concentrate their ef-

forts on specific depth levels of the ontology and if there are cer-
tain depth levels that are frequently consecutively changed and
receive less concentrated workflows. The gathered results pro-
vide the necessary information to implement prefetching mech-
anisms, potentially helping to minimize the loading and waiting
times for contributors. Furthermore, we can determine whether
users move along the structure of the underlying ontology when
editing classes.

Path & model description: For this analysis, we stored
the chronologically ordered depth levels of each changed class
for each user (user-based). The depth level of a class is the
length of the shortest path between the root node of the ontol-
ogy and the corresponding class. For example, a given path for
a given user can look like the following: Depth 3 (for class A),
Depth 3 (for class A), Depth 3 (for class A), Depth 3 (for class
B), Depth 4 (for class C). We merged consecutive changes that
were conducted by the same user on the same class into one
single sequent change between the same depth levels. Hence,
for our previous example we would merge the three successive
changes of class A into just two consecutive ones which results
in the following final depth-level path: Depth 3, Depth 3, Depth
3, Depth 4. This approach helps us to investigate patterns of
changing distinct depth levels while still retaining the notion of
users consecutively editing the same classes.

Consequently, we fit a first-order Markov chain model on
these paths – each path represents a single user and each ele-
ment of a path represents a corresponding depth level of a class
the user has changed. The final transition probabilities give us
information about consecutive depth levels that users change
over time. For example, they might tell us the probability that
users change a class belonging to the third depth level of the
ontology after one that has a depth level of 2.

Results: First, the histograms (see top area of Figures 4(a)
to 4(e)) show that work is concentrated on certain depth levels
of the ontology, with the highest and lowest levels not receiving
as much attention as the levels in-between.

As depicted in the transition maps (bottom area of Figures 4(a)
to 4(e)), users have a high tendency to edit classes in the same
depth levels, visible in the darker colored diagonal. In ICD-11,
for the first five depth levels, users appear to have a tendency to-
wards top-down editing, evident in the darker immediately right
of the diagonal, while this tendency turns around into a bottom-
up editing behavior, evident in the darker colored squares im-
mediately left of the diagonal, at a depth level of 6 and higher,
and appears to be strictly limited to surrounding depth levels.
For ICTM (see Figure 4(b)), we can observe a similar trend,
again with the tendency towards top-down editing appearing to
be minimally more dominant. For NCIt, when only looking at
the transition map, we can identify a trend towards bottom-up
editing, evident in the squares directly left of the diagonal being
darker than the ones right of the diagonal. However, when also
considering the absolute number of changes, depicted in the his-
togram of Figure 4(c), we can infer that the levels with a higher
frequency of occurrence, even though their transition probabil-
ities are more evenly distributed, have a greater impact on the
editing strategy. This means that while we can see a bottom-up
editing behavior for levels 8 to 5 and a top-down editing behav-
ior for levels 1 to 4, classes on levels 1 to 4 are more frequently
changed than classes on the other levels, hence a tendency to-
wards top-down editing can be observed. Thus, when users are
not changing the same classes, they still exhibit a preference
towards top-down editing. Given the short observation periods
for BRO and OPL it is hard to infer edit strategies. However,
similar to the other projects, we can observe a concentration
on the same depth levels with alternating preferences towards
higher and lower depth levels. Similar to ICD-11, all datasets
exhibit higher transition probabilities between the immediately
surrounding depth levels.

Furthermore, we investigate whether the total number of
classes as well as the total number of links to the immediate
higher (children; edges to classes one level further away from
root) and lower (parents; edges to classes one level closer to
root) depth level correlate with our findings (Figures 5(f) to
5(j)). For example, the transition map for ICD-11 (see Fig-
ure 4(a)) shows that contributors exhibit a top-down editing be-
havior for the first five depth levels, with level 5 exhibiting first
signs of bottom-up editing. Figure 5(f) shows a higher number
of possible transitions from children than parents, indicating
that users are in general likelier to follow top-down editing-
strategies when changing classes, following relationships by
chance, of the first four levels. This changes for ICD-11 at level
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(e) Ontology for Parasite Lifecycle (OPL)

Figure 4: Results for the Depth-Level Paths analysis: The columns and rows of the transition maps (bottom area of Figures 4(a) to 4(e)) represent the transition
probabilities of a first-order Markov chain between depth levels, where rows are source depth levels and columns are target depth levels. A sequence (or transition
probability) is always read from row to column. Darker colors represent higher transition probabilities while lighter colors indicate lesser transition-probabilities.
Absolute probability values are dependent on the number of investigated rows and columns, hence relative differences are of greater importance. For classes closer
to root a top-down editing manner can be observed, while this is reversed for classes further away from root. The sum of all transition probabilities for one row in
the transition maps is 1. For example, if Depth-Level 6 exhibits a transition probability of 0.30 to another Depth-Level 5 it means that a class on Depth-Level 5 has
a 30% probability of being changed after a class on Depth-Level 6. The histograms (top area of Figures 4(a) to 4(e)) show the number of changes performed in
each depth level aggregated over all users of the respective projects (again for a first-order Markov chain). Throughout all projects, classes located between the first
and last few depth levels (in the middle) are changed substantially more frequently than others, suggesting that work is concentrated on some depth levels while
others receive none to very few changes at all. Note, that the y-axes for all histograms are scaled differently for each dataset. For the x-axes (and column/rows of
the transition maps) we only display depth levels which exhibit at least one change, thus, the depth level sequences are not necessarily continuous from lowest to
highest depth level.
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(j) Ontology for Parasite Lifecycle (OPL)

Figure 5: The Figures 5(f) to 5(j) depict the absolute numbers (y-axis; Frequency) of classes as well as the number of edges (isKindOf ) to classes on the immediate
higher (parents; closer to root) and lower (children; further away from root) depth level for all depth levels (x-axis; Depth-Level). According to Figures 5(f) to 5(j)
the transition probabilities depicted in the transition maps correlate with the total number of edges to children and parents for each depth level across all datasets.

5, with a higher number of transitions to parents than to chil-
dren, and continues until level 10. Resulting in a higher prob-
ability of users performing bottom-up editing-strategies when
changing classes from levels 6 to 10. The same observations
can be made for all other datasets, indicating that the class hi-
erarchy influences the edit behavior of contributors.

In all datasets, after taking a BREAK (representing an artifi-
cially introduced session break when two consecutive changes
of the same user are more than 5 minutes apart; for more infor-
mation see Section 5.4), users exhibit a clear tendency towards
changing classes on certain depth levels (e.g., levels 3 to 5 for
ICD-11, levels 4 to 5 for ICTM, levels 4 to 7 for NCIt, levels 2
to 4 for BRO and levels 6 to 9 for OPL).

Interpretation & practical implications: The results of
this analysis show if, to what extent and where (limited to lo-
cality being determined by isKindOf relationships) work is con-
ducted and concentrated within the ontology. This information
can potentially be used in a variety of ways, for example by
ontology-engineering tool developers to adapt the interface of
the ontology-engineering tool dynamically to display specific

classes after users return from a BREAK. Project managers can
adapt milestones and project progress reports to reflect the un-
derlying editing strategies (e.g., top-down editing), for example
by aligning progress with created branches (opposed to com-
plete coverage). Another potential use-case for the results of
this analysis involves the prefetching of content in certain en-
vironments (e.g., mobile or embedded systems) to minimize
waiting times. Across all projects we can observe that classes
close to and very far away from the root of the ontology are not
edited as frequently as other classes. One explanation for this
observation could be that classes in lower depth levels (closer to
root) are mainly used as content dividers and are usually created
in the beginning of a project. Thus, they may be more stable
and less frequently updated. Classes at the higher depth levels
(further away from root) on the other hand most likely require
extensive expert knowledge. Hence, only a small number of
users have the necessary expertise to contribute to these classes.
Additionally, the absolute number of classes in the higher and
lower depth levels is much lower in all investigated datasets.
Note that absolute values of depth levels are less important for
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the interpretation of the results than their relative position (i.e.,
closest to root, furthest away from root, etc.). For example, a
class at level 6 can exhibit different behaviors in ontologies with
6 or 10 levels.

In all projects, except for NCIt, the depth levels where users
start to edit the ontology after they return from a BREAK are
similar to the ones where they stop editing before taking a BREAK.
To be able to make that observation we have to take the abso-
lute numbers of changes on each depth level (bottom area of
Figure 4) into account when looking at the transition probabili-
ties (top area of Figure 4). NCIt is the only dataset where users
appear to be similarly likely to take a BREAK after changing
classes across all depth levels, except for 0 and 12.

When we combine the results of this analysis with the re-
sults of the User-Sequence Paths (Section 4.1) we may be able
to develop automatic mechanisms to curate and delegate work
to users. For example, if we know that a specific user is most
probably going to contribute to a class on level 3 and we have
a set of classes on that level where that specific user is the most
probable next user to contribute to, determined by the User-
Sequence Paths analysis, we may combine these two observa-
tions to create class (and thus work) suggestions for users.

4.2.2. Hierarchical relationship paths
Given the high number of observed transitions between the

same depth levels in the Depth-Level Paths analyses (Section 4.2.1;
bottom area of Figure 4), we conducted an additional analysis
investigating the relationships between the changed classes for
all users. Hence, we wanted to know if all worked-on classes
on the same depth-levels are siblings, cousins or any other kind
of close relative? And in general, can we determine if users
follow these hierarchical orders of an ontology when contribut-
ing to classes on the same depth level? To further strengthen our
observation that users are actually moving along the ontological
hierarchy when contributing to an ontology (see Section 4.2.1),
we analyzed the relationships between the changed classes for
each user. Note that whenever we talk about relationships for
this analysis, we refer to the hierarchical isKindOf relationships
between two classes, e.g., parent, child, sibling or cousin. For
example, when traversing the shortest-path distance of 2, mul-
tiple different nodes can be reached, such as a grandparent (i.e.,
2 times up), a grandchild (i.e., 2 times down), a sibling (i.e., 1
time up, 1 time down) or even some other relationship (e.g., 1
time down, 1 time up).

Path & model description: By combining the information
from the Depth-Level Paths and the relative movement between
depth levels, we inferred the hierarchical relationships between
two consecutively changed classes of a single user (user-based).
For example, if the difference between the depth levels of the
investigated classes would be exactly the size of the shortest-
path between them (with the shortest-path being > 0), the latter-
changed class could either be a Child, a Parent, an Ancestor or a
Descendent of the first-changed class. Given a relative DOWN
movement (to a lower depth level) value, depending on the
shortest-path value, the second class could be classified as Child
(shortest-path of 1) or Descendent (shortest-path > 1). Analo-
gously follows the definition of a Parent and Ancestor with a

relative UP movement. A Sibling is defined as the two classes
being (i) connected via the same parent with (ii) a shortest-path
distance of 2 and (iii) both classes are located on the SAME
depth level. A Cousin is used when two classes on the SAME
depth level are connected by the same grand parent while ex-
hibiting a shortest-path distance of 4. Every other possible
combination of depth level and shortest-path was classified as
Other. Self indicates that the same class that was changed last
time was changed again. For example, a consecutive change of
Sibling and Self means that a change was first performed on a
class that is a sibling of the previous class (not displayed in this
example) and then another change was performed on the same
class, however now the relationship changed to Self as no new
class was involved.

Again, consecutive changes on the same class by the same
user have been merged into one single sequent change (c.f. Sec-
tion 4.2.1), meaning that multiple (more than 2) consecutive
changes of the same user on the same class have been merged
into Self to Self. Hence, a given path for a single user can, e.g.,
look like the following: Sibling, Self, Self, Child.

We fit a first-order Markov chain model to the data – each
path represents a single user and each element represents a hi-
erarchical relationship between the classes changed by the user.
The resulting transition probabilities of the fitted model can
then give us insights into common emerging patterns. E.g., we
can identify how probable it is that users change a Sibling after
a Child.

Results: When looking at the histograms (see top area of
Figures 6(a) to 6(e)), we can observe that the relationships Self,
Sibling and Other are highly represented across all datasets.
The transition maps (bottom area of Figures 6(a) to 6(e)) show
that after a BREAK, across all five datasets, users tend to change
classes “somewhere els” in the ontology, evident in the high
transition probability from BREAK towards Other, and are likely
not to resume work in the same area of the ontology that they
stopped working on. For ICD-11, ICTM and OPL, no matter
which relationship type occurs, users tend to edit the same class
consecutively (dark colors in the Self column). From this Self
relationship, which is also the one that occurs the most often in
ICD-11, ICTM and OPL, users are very likely either to change
the same class again (Self ) or to change a Sibling of the current
class.

For NCIt, BRO and OPL we can observe that users, when
changing a Parent are very likely to change a Child of that par-
ent afterwards. Note, that this Child does not necessarily have
to be the same class that was changed prior to the traversal to
Parent. In all datasets, except for OPL, very high transition
probabilities towards Other can be observed for all not so fre-
quently present relationships. In particular for NCIt we can ob-
serve that Other is the most frequently observed transition, even
before Self and Sibling.

Interpretation & practical implications: By combining
the results of this analysis with the results of the Depth-Level
Paths analysis, we can infer that users exhibit a tendency to-
wards top-down editing while contributing to the ontology, when
only considering changes that occur on different depth levels.
If they concentrate their efforts on the same depth levels, users
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(b) International Classification of Traditional
Medicine (ICTM)
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(c) National Cancer Institute Thesaurus (NCIt)
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To Relationship

F
ro

m
 R

e
la

ti
o

n
s
h

ip

0
1

0
0

2
0

0
3

0
0

F
re

q
u

e
n

c
y

Child

Cousin

Other

Parent

Self

Sibling

BREAK

C
h

ild

C
o

u
s
in

O
th

e
r

P
a

re
n

t

S
e

lf

S
ib

lin
g

B
R

E
A

K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) Ontology for Parasite Lifecycle (OPL)

Figure 6: Results for the Hierarchical-Relationship Paths analysis: The columns and rows of the transition maps (bottom area of Figures 6(a) to 6(e)) represent
the transition-probabilities of a first-order Markov chain between hierarchical-relationship levels, where rows are source relationships and columns are target
relationships. A sequence (or transition-probability) is always read from row to column. Darker colors represent higher transition-probabilities while lighter colors
indicate lesser transition-probabilities. Absolute probability values are dependent on the number of investigated rows and columns, hence relative differences are of
greater importance. Across all datasets, aside from Self, a very clear trend towards editing the ontology along Siblings can be observed. The histograms (top area
of Figures 6(a) to 6(e)) show the total number of occurrences of each relationship in the corresponding datasets aggregated over all users (again for a first-order
Markov chain). Note, that the y-axes for all histograms are scaled differently for each dataset. For the x-axes (and column/rows of the transition maps) we only
relationships that occur at least once in the corresponding paths, thus the x-axes could be different from project to project. Given the very high amount of Self
and Sibling transitions we can concur that users, when they contribute to classes on the same depth level follow a breadth-first strategy, meaning that they first
concentrate their work on closely related classes (Siblings) on the same depth-level before switching to a different branch on the same or any other depth-level.
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exhibit a breadth-first editing behavior, meaning that they first
concentrate their work on closely related classes (Siblings) on
the same depth-level before switching to a different branch on
the same or any other depth-level, either changing the same
class multiple times or traversing along siblings of the current
class. We can leverage this information not only to refine the
previously suggested pre-fetching of classes but also to enhance
possible class recommendations. Similarly, it is possible for
ontology-engineering tool developers to minimize the neces-
sary efforts of users to contribute to the ontology by implement-
ing, for example, guided workflows that take the underlying edit
strategies of the contributors into account.

As classes in ICD-11 and ICTM have a large number of
properties and for ICTM certain properties have to be added
in multiple languages, the high transition probabilities towards
Self (dark colors in the Self column) are not surprising. One
possible explanation for this observation for ICD-11 could be
the special functionality available in iCAT (for ICD-11) that
allows users to export parts of the ontology as spreadsheets for
local editing and adding property values. Once contributors fin-
ished editing the spreadsheet they have to enter the data into
the system manually, as no automatic import functionality is
present. In the iCAT interface, users are simultaneously pre-
sented with the ontology tree for navigating through the classes
and the corresponding properties and property values. When
users select a property they can easily switch between classes,
with the selected property staying selected, thus allowing to
quickly enter the same properties for different classes.

A similar, yet not as dominant as in ICD-11 and ICTM, be-
havior can be observed for NCIt and BRO and even to some
extent in OPL, which all do not use the export functionality.
According to our observations, users travel along the underly-
ing hierarchy when contributing to the ontology. Given the ob-
servations made for ICD-11 this behavior can be enforced by
providing certain functionalities in the user-interface especially
when they compliment the workflows of the contributors.

The results of this analysis have also shown that users are
likely to pursue a certain strategy or intermediate goal for their
edit sessions, for example changing all classes in a specific
(narrow) area of the ontology. This is evident in the obser-
vation that after returning from a BREAK, users have a very
high tendency to change the ontology “somewhere else” (see
the transition probabilities from BREAK towards Other in the
top-row of Figure 6), rather than picking up the work, where
they left off. This discovery is very important for developing
class-recommender, as we may use the results of this analy-
sis to suggest closely related classes to the current class a user
is working on, however when that user stays inactive for the
duration defined for introducing BREAKs the recommendation
strategy has to be changed.

4.3. Property paths
Aside from analyzing different aspects of activity (Section 4.1)

and the correlation between contribution patterns and the struc-
ture of an ontology (Section 4.2), we can use Markov chains
to perform an analysis on the properties that are consecutively
change by users in an ontology. This means that, for example,

if a property value was edited by a user, we extracted the prop-
erty (not the value) and created chronologically ordered lists
of properties, whose values were changed by the corresponding
users. For example, if a user changed the title of a specific class,
we would extract title, rather than the value inserted into the title
property. Now, we provide insights into emerging patterns from
different viewing angles for the observations. Thus, we look
at property sequences for (a) single users (user-based) and for
(b) single classes (class-based) – see Section 3.2. We were not
able to perform the Property Paths analysis on OPL and BRO
as these datasets contain only a very limited number of unique
property value changes during our observation periods. We also
had to discard the results from NCIt, as the ontology-editing en-
vironment for NCIt provides a unique change-queuing mecha-
nism that allows for multiple property values to be changed at
the same time, making it impossible to extract chronologically
ordered sequential property patterns.

Path & model description: First, we extracted the proper-
ties whose values were changed in ICD-11 and ICTM, sorted
either by user and timestamp or by class and timestamp. Fi-
nally, two different types of chronologically ordered property
lists were extracted, one ordered per user and one ordered per
class (for both datasets). The properties in Property Paths rep-
resent the ones which can be assigned a value for each class
in ICD-11 and ICTM. Whenever a change did not modify a
property (e.g., because the change action dealt with moving
or creating a class) we added the element no property to the
corresponding path. A potential path for a single user or class
then may look like: title, title, title, use. Similar to previous
analyses, if the same user has consecutively changed the same
property (e.g., in the previous example title) on the same class,
we merged these multiple changes into one successive change.
Analogously, however without the restriction of the same user,
if the same property was changed on the same class, we merged
these changes into one sequent change. For previous example,
if changes would have been performed editing the referenced
properties for a single class, we would end up with the path:
title, title, use.

Consequently, we fit a first-order Markov chain model on
this set of paths (for users or classes). The final transition prob-
abilities of the model then give us information about the proba-
bility of changing a value of one property Y after another prop-
erty X either for users or for classes. For instance, we can
find the property Y that most frequently has been changed after
property X for classes.

Results: When looking at the histograms (top area in Fig-
ures 7(a) to 7(d)) we can see that even after removing not very
frequently used properties,11 both datasets exhibit a few prop-
erties which have received a high number of changes, while the
remaining majority of properties only received a very limited
number of changes. For both datasets, aside from no prop-
erty, the properties use, title and definition appear to be the
most frequently used properties. As can be seen in the top area

11All properties which where rarely edited have been removed from Figure 7
as they do not hold information but their removal increased the readability of
the plots dramatically.
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(d) International Classification of Traditional Medicine
(ICTM) (User)

Figure 7: Results for the Property Paths analysis: The columns and rows of the transition maps (bottom area of Figures 7(a) to 7(d)) represent the transition-
probabilities of a first-order Markov chain between consecutively changed properties, where rows are source properties and columns are target properties. Fig-
ures 7(a) and 7(c) represent class-based patterns while Figures 7(b) and 7(d) visualize user-based patterns. A sequence (or transition-probability) is always read from
row to column. Darker colors represent higher transition-probabilities while lighter colors indicate lesser transition-probabilities. Absolute probability values are
dependent on the number of investigated rows and columns, hence relative differences are of greater importance. Across all datasets a very clear trend towards con-
secutively editing the same properties can be observed. The histograms (top area of Figures 7(a) to 7(d)) show the total edits of each property in the corresponding
datasets aggregated over all users and classes (again for a first-order Markov chain). Note, that the y-axes for all histograms are scaled differently for each dataset.
As ICTM and ICD-11 only share a limited amount of properties the x-axes (and column/rows of the transition maps) are different from project to project. In both
projects and across all 4 different approaches the title, definition and use properties are frequently used. Due to reasons of readability we were forced to remove
properties from the plots, which exhibited only a very limited number of changes, thus did not provide substantial information for the purpose of this analysis.
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of Figures 7(a) and 7(b), multiple consecutive changes of the
same property appear to be fairly common for both datasets. In
contrast, when looking at Figures 7(c) and 7(d), which depict
the transition probabilities between the sequences of properties
changed by each user, we can see an even stronger trend to-
wards consecutively changing the same properties across dif-
ferent classes, especially definition, title and use. For ICD-11
Figures 7(a) and 7(c) show that the class-based approach is less
focused on consecutively changing the same property, evident
in the brighter diagonal, when compared to the user-based ap-
proach. This is due to the export functionality available in iCAT
combined with the manual process of inserting the same prop-
erty for different classes by users of ICD-11. In contrast, such
functionality is absent in ICTM, thus leading to similar behav-
iors for the class and user-based approaches for ICTM. The fact
that a large portion of successive changes are conducted on the
same property for both approaches analyzed for ICTM could
also be due to the multilingual nature of the project, meaning
that certain properties, such as title and definition, have to be
entered multiple times in multiple languages. Similar results
have been presented by Wang et al. [24], who used association
rule mining techniques to analyze the change-logs of ICD-11
and ICTM.

Contributors in ICD-11 have a high tendency of performing
no property changes after they return from a BREAK followed
by use, title and definition. In ICTM, users resume their work
primarily by changing the title property, the definition property
followed by no property changes.

Interpretation & practical implications: One of the main
benefits of this analysis is the identification of commonly and
consecutively changed properties for classes and users. In turn,
this information might potentially be used to suggest work (e.g.,
prompting a user to check a certain property by combining the
User-Sequence Paths analysis and the Property Paths analy-
sis), or by ontology-engineering tool developers to potentially
anticipate the property a user is most likely to change next.
The fact that classes appear to exhibit more diverse property-
contribution patterns when being changed than users could be a
direct result of the multi-lingual nature of ICTM and the already
mentioned export functionality present in iCAT. This means
that given the most recent property of a class that was edited,
we may predict which property is most likely to be changed
next. Similarly, we can predict the property a user is going to
edit next.

5. Findings and discussion

In this section we first summarize our findings in Section 5.1
before we shortly discuss the potential applicability of higher
order Markov chain models in Section 5.2. Next, we discuss
differences between the investigated projects in Section 5.3 and
finally, point out potential limitations of this work in Section 5.4.

5.1. Summary of findings

We will now discuss our main findings (Table 2) and explore
their consequences.

Emergence of micro-workflows: By investigating whether
sequential user-contribution patterns (see Section 4.1) can be
identified in five different collaborative ontology-engineering
projects, we have shown that users appear to work in micro-
workflows, indicating that for all investigated projects, each
user contains predictive information about the user, who is go-
ing to contribute to a specific class next.

Additionally, however not presented in this paper due to
reasons of space, we have also conducted an analysis to de-
termine the change type (e.g., adding a property value, moving
a class, replacing a property value, etc.) a user is most likely
to perform next (as shown in Walk et al. [30] for ICD-11). In
this analysis we were able to extract a first-order Markov chain
for all datasets presented in this paper, meaning that the last
change type that a user performed contains information about
the next change type of that user. When combining the infor-
mation about the user who is most likely to contribute to a class
next and the specific change action that this user is most likely
to conduct (or the change action that is most likely conducted
on a class next), we can create specific tasks for contributors,
asking them to perform a certain change on a specific class.

Our results could be used by project managers and ontology-
engineering tool developers to identify classes for users and
users for classes, helping editors to minimize the necessary ef-
forts for finding and identifying classes to contribute to. More-
over, automatic means of curating and delegating work-tasks to
users can be derived by ontology-engineering tool developers,
which can help to potentially increase participation as discussed
in Kittur and Kraut [31].

User roles can be identified: Across all datasets we were
able to identify that a limited number of users have contributed
to the majority of all changes. These highly active users are
very likely to be target users for all other users, meaning that
they are very likely to change the same class after another user.
Across all five datasets, the roles of these target users could be
identified by us as moderators or administrators of the corre-
sponding projects performing maintenance tasks, such as gar-
dening (e.g., pruning outdated classes, fixing errors, etc.) or
manual verification of newly added data.

Furthermore, we were able to show that moderators and ad-
ministrators divide work among each other, as they are not very
likely to change the same classes directly after another admin-
istrator or moderator, even though these users exhibit the high-
est absolute numbers of changes in the corresponding projects.
Looking at the transition probabilities of Figure 3 it is possible
to identify users or even groups of users who have a high ten-
dency to work on the same classes, thus might be collaborators
or reverting/correcting changes of each other.

Users edit the ontology top-down and breadth-first: The
Depth-Level Paths analysis (see Section 4.2.1) demonstrated
that users have a very high tendency of staying in the same
depth level when contributing to the ontology. If editors change
depth levels while editing the ontology they exhibit a minimal
preference to do so in a top-down rather than a bottom-up man-
ner. Furthermore, the results suggest that users move along the
hierarchy as we were able to show that they follow a top-down
editing strategy for classes that are closer to the root node while
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Table 2: A summary of all findings applicable to all investigated biomedical ontologies. All listed findings are discussed in more detail in Section 5.

User-sequence paths
(cf. Section 4.1)

Users work in micro-workflows Information about which users successively change a class can be
identified; i.e., information about who has edited classes in the past
contains predictive information about who is going to change a
class next.

User-roles can be identified

Looking at historic data, we can identify different user roles, i.e.,
administrators and moderators, gardeners (a contributor focused on
pruning ontology classes and fixing syntactical errors) and users
that frequently interact with (collaborate/revert) each other.

Structural paths
(cf. Section 4.2)

Users’ edit behavior is influenced by the class hierarchy Contributors, when adding content to the ontology, are influenced
by the class hierarchy.

Users edit the ontology top-down and breadth-first

By and large, users exhibit a minor tendency towards top-down
editing behavior when changing hierarchy levels while contribut-
ing. However, when staying in the same hierarchy level, contrib-
utors rather follow a breadth-first edit behavior, moving from one
sibling of a class to the next sibling.

Users edit closely related classes
Contributors have a very high tendency to consecutively change
closely related classes, as opposed to randomly and distantly re-
lated classes.

Property paths
(cf. Section 4.3) Users perform property-based workflows

Contributors, when adding content to the ontology, tend to concen-
trate their efforts on one single property, which is added and edited
for multiple classes.

this changes to a bottom-up editing strategy for classes closer to
the deepest depth levels and transitions are more likely to occur
along the immediate higher or lower depth level.

To further investigate the distances between changed classes
at the same depth levels we investigated the Hierarchical Rela-
tionship Paths (e.g., child, parent, sibling, cousin, etc.) between
these changed classes. We found that users, when they edit
classes on the same depth level, follow a breadth-first manner,
focusing on editing all the siblings of a class before switching
to a completely different area of the ontology to continue their
work after a BREAK.

Users edit closely related classes: Additionally to the breadth-
first manner that users follow when editing classes in the same
depth level, we discovered that users have a very high tendency
to work on closely related classes (e.g., the sibling or cousin
of the currently changed class). The information collected in
Section 4.2 allows to potentially predict (or narrow down) the
class a user is going to contribute to next, which, if accurate, is a
very valuable information that could be used for a variety of im-
provements and adaptions. For example, project-administrators
could adjust the milestones of the development-strategy to bet-
ter reflect the way users contribute to the ontology while user-
interface designers could emphasize certain areas of the ontol-
ogy to direct users towards specific classes – especially after
they return from a BREAK – or implement pre-fetching algo-
rithms to minimize load-times. For contributors in particular,
the task of identifying and finding classes that they (i) want and
(ii) have the necessary expert knowledge to contribute to is a
time-consuming task, which potentially can be minimized by
implementing class recommender based on the results of the
Structural Paths Analysis and User-Sequence Paths Analysis.

Users perform property-based workflows: The investi-
gation of sequential patterns for property-contributions showed
that in ICD-11, users have a very high tendency of consecu-
tively changing the same property across multiple classes. We
could also identify specific patterns that emerge when users suc-

cessively change properties in collaborative ontology-engineering
projects.

The results collected in the Section 4.3 provide new insights
for administrators and ontology-engineering tool developers, as
they allow the generation of work-tasks (e.g., Please verify the
property title of the class XII Diseases of the skin!). So far,
users are always presented first with the section of the inter-
face that allows for changing or adding the title and definition,
which could be one explanation for the high probabilities of
users changing these properties when returning from a BREAK.

Note, that for this analysis we have used the data from ICD-
11 and ICTM, which both share a very similar ontology-engineering
tool, thus the results might be biased towards the used ontology-
editor.

5.2. Higher order Markov chains

Based on our proposed methodology of using first-order
Markov chain models (see Section 3.3) resulting in the find-
ings summarized in Section 5.1, we currently lay our focus
on detecting patterns only derived from successive interactions
within collaborative ontology-engineering projects. This means,
that we identify how likely it is that one specific interaction fol-
lows another one (e.g., which user edits a class after another
one). This is reasoned by the definition of a first-order Markov
chain based on the Markovian property which postulates that
the next interaction only depends on the current one.

Contrary, Markov chain models can also be defined on higher
orders; this means that the next state of the model (or interac-
tion in our case) depends on a series of preceding ones instead
of only the current one. For example, a second-order Markov
chain model postulates that the next state depends on the cur-
rent state and also the previous one. Previous studies suggest
that human navigation on the Web might be better modeled by
using higher order models compared to first-order models (e.g.,
[32, 29]). Hence, we could assume that this might also be the
case for our use-case. By also modeling our data with such
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higher order models, we would potentially be able to identify
longer patterns (e.g., User A regularly edits a class after User B
and User C). Also, possible recommender systems could ben-
efit from the additional predictive power of such higher order
chains.12 While highly interesting, this analyses would be out-
of-scope for this article which is why we leave this open for
future work.

5.3. Differences between the investigated projects
Even though each project exhibits a different number of

depth levels, which all receive a different amount of attention by
the contributors, we can observe commonalities of edit strate-
gies between them. For example, the levels 3 to 6 exhibit the
highest number of changes in our observation period for ICD-
11, while for OPL these levels are 6 and 7.

Regarding the hierarchical relationships we can see that con-
secutively changing the same class is very likely to happen in
ICD-11, ICTM, BRO and OPL regardless of the source rela-
tionship (evident in the darker colored Self columns in Fig-
ures 6(a), 6(b), 6(d) and 6(e)). This Self -relationship is still very
prominent, however the transition probabilities towards Self for
NCIt are not as dominant as they are for the other datasets.

Another observation depicted in the transition maps is the
clear focus on transitions from Sibling to Sibling across three
out of five datasets, with the exception of ICTM and OPL. One
explanation for ICTM could be the fact that some properties of
the ontology are multi-lingual, thus require users to add multi-
ple languages for the same property, which are all stored as a
single change. For OPL, transitions, except towards Self are in
general really scarce, indicating that users focused on editing
and entering multiple property values (or one property value)
of a single class before continuing to the next class.

When looking at the sequence of changed properties for
each class (in contrast to: for each user) we can observe a
concentration on consecutively changing the same property in
ICTM, which is most likely a direct result of the multi-lingual
nature of the properties used in this project. In ICD-11 on the
other hand, transitions between changed properties of classes
are much more diverse and less focused on transitions between
the same properties. This observation indicates that either not
all properties have received a substantial amount of values for
all the possible properties and/or that users make use of this
special export functionality of iCAT, thus successively chang-
ing the same property is less common as the content is only
inserted once into the system.

In the User-Interface Sections Paths analysis we have mapped
the changed properties to the corresponding sections of the user
interface of the used ontology-engineering tools, which essen-
tially represents a more abstract analysis of the Property Paths
analysis. By investigating the sequences of user interface sec-
tions we could confirm that, for ICD-11, users have a very high
tendency to consecutively change the same properties for mul-
tiple classes, evident in the scarce transitions between different

12Note that it is necessary to apply model selection techniques as described
in [29] in order to identify the most appropriate Markov chain order based on
statistical significant improvements of higher orders compared to lower orders

sections and the high concentration on transitions between the
same sections. For ICTM this behavior was not as distinctive
as it was for ICD-11, which could be due to the missing export
functionality and therefore the lack of the previously explained
manual import sessions.

In general these observations indicate that the absence or
presence of a given functionality of the ontology-engineering
tool can produce (and influence) different editing behaviors when
developing an ontology.

5.4. Limitations
We were not able to recreate the exact class hierarchy of the

ontology for every single change across our observation periods
for all datasets. This limitation is partly due to a lack of detail in
the change-logs. Thus, we decided to focus our analysis, using
all five ontologies as is at the latest point in time, which is also
what would most likely be used in a real-world scenario.

For example, if a class was changed by a user while it was
located on depth level 3 and at a later point in time moved to
a different location where it now resides at depth level 5, we
would assume that this class has always been on depth level 5.
Please note that this bias is only present in the Structural Paths
analyses (Section 4.2). To measure the extent of the potential
bias, we counted all changes that were performed on a class be-
fore it was moved within in the ontology. Applying this rule to
our change dataset, we collected a total of 116, 204 of 439, 229
changes for ICD-11 and 18, 958 of 67, 522 for ICTM. These
numbers represent about 1/4 and 1/3 of all changes for ICD-11
and ICTM respectively. For BRO 276 of 2, 507 (ca. 1/10) and
for OPL 2 of 1, 993 of all changes were performed on classes,
which have been moved afterwards.

Note that an additional requirement for the identification of
sequential patterns in collaborative ontology-engineering projects
using Markov chains is the availability of rather large change-
logs. In general, the less common entities (e.g., properties) are
present in the change-log the more (exponentially) observations
have to be available in order to detect more fine-grained pat-
terns. Without enough observations (changes), the identifica-
tion of sequential patterns is either very hard, and can only be
approximated, or not possible at all. As can be seen in Table 1,
we have selected all of our datasets to satisfy this requirement,
as all chosen datasets exhibit a substantial number of changes.

Furthermore, we have included artificial session breaks into
our analysis as described by Walk et al. [30] to analyze where
or what users start to edit in the ontology and where or what
users edit before they take a break. For all user-based analyses
we have introduced a BREAK if two consecutive changes of the
same user were apart longer than 5 minutes.

All analyses in this paper are based on isKindOf relation-
ships for determining distances and locations within the ontol-
ogy. We plan on further expanding this analysis by investigating
the impact of other kinds of relationships and other features that
are available in ontologies on our pattern detection approach.

Even though all datasets presented in this paper are created
with WebProtégé or one of its derivatives, there is only one re-
quirement that prevents practitioners from performing this anal-
ysis on other ontologies: The availability of a change-log (in
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the required granularity for the deemed analyses) that can be
mapped onto the underlying ontology. Note that it would be
possible to conduct this analysis for ontologies created by sin-
gle individuals, meaning that “collaboration” is only a require-
ment when the nature of the analysis requires investigating tran-
sitions between multiple users.

Also, the kind of knowledge base (classification, taxonomy
or ontology), the used representation language (e.g., OWL and
OWL-DL expressivity, RDF, Turtle) or the development tool of
a particular collaborative ontology-engineering project in ques-
tion does not prohibit conducting a pattern analysis as presented
in this paper, as long as the underlying knowledge base (and
thus the change-log) exhibits the necessary granularity and the
semantic properties of interest for the analysis.

However, this also means that the differences of the knowl-
edge representation used languages (i.e., expressivity and types)
are not considered by our analysis, with NCIt being a thesaurus
and the rest of the investigated datasets being ontologies. Thus,
whenever differences are observed between NCIt and the re-
maining datasets, further research is warranted to determine the
origin of this observation.

Furthermore, the analysis presented relies on investigating
usage logs of collaborative ontology-engineering projects by
looking at changes, performed by users of the corresponding
systems. As this only represents one possible way of interacting
with the underlying ontology, albeit the most frequently used
one, an extension of the conducted Markov chain investigation
warrants future work to include, for example, discussions for
consensus building, suggestions of terms by users or automatic
imports.

6. Related work

For the analysis and evaluation conducted in this paper, we
identified relevant information and publications in the domains
of (i) Markov chain models, (ii) collaborative authoring systems
and (iii) sequential pattern mining.

6.1. Markov chain models

In the past, Markov chain models have been heavily applied
for modeling Web navigation – some sample applications of
Markov chains can be found in [33, 34, 35, 36, 37, 38]. Also,
the Random Surfer model in Google’s PageRank [39] can be
seen as a special case of a Markov chain.

Previously, researchers investigated whether human naviga-
tion is memoryless (i.e., of first order) in a series of studies (e.g.,
[40, 36]). However, these studies mostly showed that the mem-
oryless model seems to be a quite plausible abstraction (see
e.g., [41, 42, 37, 38]). Recently, a study picked up on these in-
vestigations and suggested that the Markovian assumption (i.e.,
property) might be wrong [32]. However, this study did not re-
veal any statistically significant improvements of higher order
models. Singer et al. [29] solved this problem by developing a
framework for determining the appropriate order of a Markov
chain for a given set of input data. In Walk et al. [30] we ap-
plied and mapped the presented framework onto structured logs

of changes and provided an in-depth description of the require-
ments and steps necessary to use the framework in this setting.

In this paper we present a detailed analysis of sequential
patterns by applying and analyzing Markov chains across the
change-logs of five collaborative ontology-engineering projects
in the biomedical domain. A more detailed explanation of the
necessary steps to be able to apply Markov chains onto the
change-logs of collaborative ontology-engineering projects is
presented in Walk et al. [30]. Note that we focus on applying
first-order Markov chain models in this work while we see the
application of also higher order models as highly interesting fu-
ture work as discussed in Section 5.2.

6.2. Collaborative authoring systems

Research on collaborative authoring systems such as Wikipedia
has in part focused on developing methods and studying factors
that improve article quality or increase user participation. These
problems represent important facets of collaborative authoring
systems and solutions to tackle these problems are of interest
for collaborative ontology-engineering projects.

For example, Cabrera and Cabrera [43] demonstrated the
effect of minimizing the costs and efforts necessary for users
to contribute on potentially achieving higher contribution rates.
Another approach, also presented by Cabrera and Cabrera [43],
focuses on providing an environment where interactions and
communication between contributors are encouraged and per-
formed frequently over a long period of time to establish a
group identity and to promote personal responsibility.

More recent research on collaborative authoring systems,
such as Wikipedia, focuses on describing and defining not only
the act of collaboration amongst strangers and uncertain situ-
ations that contribute to a digital good [44] but also on an-
tagonism and sabotage of said systems [45]. It has also been
discovered only recently that Wikipedia editors are slowly but
steadily declining [46]. Therefore Halfaker et al. [47] have an-
alyzed what impact reverts have on new editors of Wikipedia.
Kittur and Kraut [31] showed that an increase in participation
can be achieved by directly delegating specific tasks to con-
tributors. As simple as this approach may appear, the identi-
fication of work (and thus specific tasks) is still a tedious and
time-consuming process, which can only partly be automated
due to its assigned complexity.

With the analysis that we described here, we provide new
results that we can use to tackle some of the problems for col-
laborative authoring systems. These problems are also present
in collaborative ontology-engineering projects. For example,
we can identify new tasks by combining the results of the User-
Sequence Paths (Section 4.1) and Property Paths (Section 4.3)
analyses to suggest classes and the corresponding properties to
work on to users.

6.3. Sequential pattern mining

In 1995 Agrawal and Srikant [48] have first addressed the
problem of sequential pattern mining. They stated that given a
collection of chronologically ordered sequences, sequential pat-
tern mining is about discovering all sequential patterns weighted
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according to the number of sequences that contain these pat-
terns. The presented algorithm represents one of the first a
priori sequential pattern mining algorithms. This means that a
specific pattern cannot occur more frequently (above a thresh-
old) if a sub-pattern of this pattern occurs less often (below that
threshold). Other examples of a priori algorithms are [49, 50].

One of the biggest problems assigned to the a priori based
sequential pattern mining algorithms was (in the worst case)
the exponential number of candidate generation. To tackle this
problem Han et al. [51] developed the FP-Growth algorithm.

Many researchers have adapted different algorithms and ap-
proaches for different domains to anticipate changing require-
ments, such as Wang and Han [52] and Hsu et al. [53] who an-
alyzed algorithms for sequential pattern mining in the biomed-
ical domain.

In Walk et al. [30] the authors have presented a novel ap-
plication of Markov chains to mine and determine sequential
patterns from the structured logs of changes of collaborative
ontology-engineering projects. Making use of this framework
we investigate differences and commonalities across five differ-
ent collaborative ontology-engineering projects from the biomed-
ical domain.

7. Conclusions & future work

In this work, we discovered intriguing social and sequential
patterns that suggest that large collaborative ontology-engineering
projects are governed by a few general principles that determine
and drive development. Specifically, our results indicate that
patterns can be found in all investigated projects, even though
the National Cancer Institute Thesaurus (NCIt), the Interna-
tional Classification of Diseases (ICD-11), the International Clas-
sification of Traditional Medicine (ICTM), the Ontology for
Parasite Lifecycle (OPL) and the Biomedical Resource Ontol-
ogy (BRO) (i) represent different projects with different goals,
(ii) use variations of the same ontology-editors and tools for the
engineering process and (iii) differ in the way the projects are
coordinated. Using the presented Markov chain analysis, mul-
tiple different user-roles could be identified in all investigated
datasets. We were also able to see that users work in micro-
workflows, meaning that given a specific user, we can iden-
tify the most likely users that are editing a specific class next,
again independent from the investigated project. When con-
tributing to a project that is created using WebProtégé, iCAT,
iCAT-TM or Collaborative Protégé, users exhibit a tendency to
do so in a top-down and breadth-first manner, editing primarily
closely related classes while moving along the ontological hier-
archy. In ICD-11 and ICTM we were able to identify property-
based workflows, meaning that users concentrate their efforts
on adding and editing values for one specific property for mul-
tiple classes.

The analysis presented not only provides new insights about
the engineering and development processes of each single project,
but also shows that the analysis of sequential patterns poten-
tially provides actionable insights for different stakeholders in
collaborative ontology-engineering projects.

Furthermore, the information of the next possible action
(e.g., a user, a change-type, a property, set of classes) or the
combination of multiple of these next actions could be used
by ontology-engineering tool developers to potentially augment
users in collaboratively creating an ontology. For example, by
making use of the Property Paths analysis to highlight, prefetch,
rearrange or adjust sections and content of the interface dynam-
ically, according to the user’s needs.

The next logical step to further deepen our understanding
of collaborative ontology-engineering projects involves apply-
ing the gathered results to productive and live environments,
for example as plug-in for (Web)Protégé. Simultaneously, this
would allow us to collect valuable data to quantify the useful-
ness and actionability of the results, generated with our pre-
sented approach, in real world scenarios.

Additionally, expanding the Markov chain analysis to take
other types of interactions (e.g., discussions, automatic imports
and term suggestions by users) into account, represents a poten-
tial topic of future work. This also includes a detailed analysis
of human factors studies in terms of user-studies (e.g., with a
heuristic evaluation or A/B testing) or more sophisticated ap-
proaches, such as eye tracking, to assess the usefulness of the
presented results for augmenting users when collaboratively en-
gineering an ontology.

Furthermore, as change tracking and click tracking data will
likely become available more broadly in the future, we believe
that the analysis of this paper and the possible benefits of putting
the results into practical use represent an import step towards
the development of better (and simpler) ontology editors, which
can dynamically anticipate the editing-style of the users. Project
administrators could make use of the results of the analysis, for
example by allowing for easier delegation of work to the “right”
users. This is even more emphasized when considering that the
Markov chain analysis is not computationally intensive, making
it highly suitable for productive use.

As biomedical ontologies play an increasingly critical role
in acquiring, representing, and processing information about
human health, we can use quantitative analysis of editing be-
havior to generate potentially useful insights for building better
tools and infrastructures to support these tasks.
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