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ABSTRACT

Within the last few years the importance of collaborative ontology-
engineering projects, especially in the biomedical domain, has dras-
tically increased. This recent trend is a direct consequence of the
growing complexity of these structured data representations, which
no single individual is able to handle anymore. For example, the
World Health Organization is currently actively developing the next
revision of the International Classification of Diseases (ICD), us-
ing an OWL-based core for data representation and Web 2.0 tech-
nologies to augment collaboration. This new revision of ICD con-
sists of roughly 50,000 diseases and causes of death and is used
in many countries around the world to encode patient history, to
compile health-related statistics and spendings. Hence, it is crucial
for practitioners to better understand and steer the underlying pro-
cesses of how users collaboratively edit an ontology. Particularly,
generating predictive models is a pressing issue as these models
may be leveraged for generating recommendations in collaborative
ontology-engineering projects and to determine the implications of
potential actions on the ontology and community. In this paper we
approach this task by (i) exploring whether regularities and com-
mon patterns in user action sequences, derived from change-logs
of five different collaborative ontology-engineering projects from
the biomedical domain, exist. Based on this information we (ii)
model the data using Markov chains of varying order, which are
then used to (iii) predict user actions in the sequences at hand.
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1. INTRODUCTION

The complexity of structured knowledge representations, espe-
cially in the biomedical domain, has dramatically increased over
the last decade. This recent trend is the direct result of the increas-
ing requirements for these ontologies to satisfy, due to a growing
field of application. For example, the International Classification
of Diseases in its 10® revision (ICD-10) is used to encode patient
history data and to compile health-related spending and morbidity
as well as mortality statistics for international comparison. To in-
crease the utility of ICD, the World Health Organization (WHO) is
currently developing the 11™ revision of this classification (ICD-
11), using the Internet and Web 2.0 technologies as collaboration
platform and an OWL-based core for knowledge representation.
This change in knowledge representation will allow for additional
information to be stored inside ICD-11. For example, diseases will
have (among others) explicitly defined related/affected body parts
and diagnostic criteria. Compared to ICD-10, the new revision
now contains around 50,000 diseases and causes of death, thus has
roughly tripled in size and is to be developed until 2017.

Due to this increase in complexity, ontologies, such as ICD-11,
can no longer be developed by single authorities. Instead, WHO
decided to open-up the development process of ICD-11, allow-
ing everyone with access to the Internet to contribute and discuss
changes made to the ontology. However, this open and collabo-
rative ontology-engineering process poses many, yet unidentified,
problems to tackle and anticipate. For instance, tracking and mon-
itoring user actions or the overall progress of the underlying ontol-
ogy as well as helping users to identify work tasks, which they have
the required expertise to contribute to, are two either computation-
ally expensive or very time consuming tasks. In particular, admin-
istrators of collaborative ontology-engineering projects are in need
of better tools to understand and augment users when contributing
to these projects.

Objective. Our main objective is to predict user actions in col-
laborative ontology-engineering projects; e.g., the property a user
is most likely to edit next. We want to achieve this task by first
exploring whether regularities and sequential patterns exist, then
building upon these observations for modeling the data and finally,
evaluating the prediction accuracy of each model.

Approach. Specifically, we will approach this objective as fol-
lows in subsequent order:
(i) Exploring action sequences: First, we investigate whether action
sequences based on several dimensions (e.g., sequential properties
changed by users as illustrated in Figure 1) exhibit regularities or
are emerging in random fashion before we mine and study common
sequential patterns in our data.



(ii) Modeling action sequences: Next, we establish our model ap-
proach using Markov chains of varying order, allowing us to in-
corporate our insights from the first research approach. We also
present model selection techniques that can be used for testing and
evaluating the accuracy of these models.

(iii) Predicting user actions: Subsequently, we fit these models to
our data and evaluate each model, giving insights into their predic-
tive power. The models may be leveraged for generating recom-
mendations in collaborative ontology-engineering projects and to
determine the implications of potential actions on the ontology and
community.

We perform our experiments on five datasets stemming from dif-
ferent biomedical projects (ICD-11, The International Classifica-
tion of Traditional Medicine (ICTM), The National Cancer Insti-
tute Thesaurus (NCIt), The Biomedical Resource Ontology (BRO)
and The Ontology of Parasite Lifecycle (OPL); for more details see
Section 2).

Contributions. To the best of our knowledge, this paper presents
the most detailed analysis of sequential user actions in collaborative
ontology-engineering projects in the biomedical domain for pre-
dicting future actions. We find (significant) evidence that (i) regu-
larities and (long) sequential patterns do exist and (ii) demonstrate
their utility for predicting the action that is most likely to occur next
in our datasets.

Our insights not only improve our understanding of how users
engage in collaborative ontology-engineering projects but can also
potentially improve the workflow of collaborators by, e.g., recom-
mending properties to contributors to edit next. By doing so, we
may be able to better leverage the expertise of contributors by steer-
ing them into the right direction. Apart from that, practitioners may
also be able to enhance the quality of specific parts of the ontology
by promoting them to the right users. Having predictive models
for user actions will also allow collaborative ontology-engineering
project administrators to assess potential actions regarding their im-
plications on the underlying ontology and community.

Structure of this article. We introduce our experimental setup
in Section 2 before we explore action sequences in Section 3. We
introduce our model approach in Section 4 and apply and evaluate
these models in Section 5. We discuss (Section 6) our findings and
related work (Section 7) next and conclude our work in Section 8.

2. EXPERIMENTAL SETUP

In this section we first briefly introduce our five datasets, stem-
ming from the biomedical domain, before we elaborate on our spe-
cific dataset preparation steps.
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Figure 1: The top row of the figure depicts an exemplary user-
based property sequence with properties Title, Definition and
Term for a user. This means that the first property that was
changed by the user is Title, then Definition and last Term. The
bottom row of the figure shows the class-based sequential prop-
erty path for a class and the same properties Title, Definition
and Term. Analogously, the first property that was changed for
the class was Definition, then Title and last Term.
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2.1 Dataset Description

Table 1 lists the detailed features and observation periods for all
datasets used in our analysis. The two largest datasets are ICD-
11! and the National Cancer Institute Thesaurus (NCIt) [28] with
48,771 and 102,865 classes and 439,299 and 294,471 changes re-
spectively. NCIt is a reference vocabulary for clinical care, transla-
tional, basic research and cancer biology. The International Classi-
fication of Traditional Medicine (ICTM), which was first intended
to be a stand-alone biomedical ontology but was merged with ICD-
11 after our observation period, represents a collaborative ontology-
engineering project of medium size, with 1,506 classes and a total
of 67,522 changes. ICTM is developed by WHO and tries to unify
knowledge from traditional medicine practices from China, Japan
and Korea. The Biomedical Resource Ontology (BRO) and the On-
tology for Parasite Lifecycle (OPL) are two smaller sized collabo-
rative ontology-engineering projects with only 528 and 393 classes
and 2,507 and 1,993 changes respectively. BRO is a controlled
terminology for describing the source type, areas of research, and
activity of biomedical related resources. OPL models the life cycle
of a parasite, which is responsible for a number of human diseases.

2.2 Dataset preparation

We extracted sequences from activity logs of the five collabora-
tive ontology-engineering datasets to perform our experiments on.
All extracted sequences are either class- or user-based (see Fig-
ure 1). A class-based sequence depicts a chronology of a specific
feature of all changes that were performed by any user on a single
class. A user-based sequence, analogously, captures the ordered list

"http://www.who.int/classifications/icd/
ICDRevision/

Table 1: Characteristics of the investigated datasets. Note that all datasets differ in size (number of classes and users), activity
(number of changes) and observation periods. ICD-11 and ICTM both exhibit changes that were performed automatically and are
denoted as # of bots (changes) in the table. For our analysis we removed these changes.

ICD-11 ICTM NCIt BRO OPL
Ontolo # of classes 48,771 1,506 102,865 528 393
Y| # of changes 439,229 67,522 294,471 2,507 1,993
Users # of users 109 27 17 5 3
# of bots (changes) 1(935) 1(1) 0(0) 0(0) 0(0)
Duration first change 18.11.2009 | 02.02.2011 | 01.06.2010 | 12.02.2010 | 09.06.2011
last change 29.08.2013 | 17.7.2013 | 19.08.2013 | 06.03.2010 | 23.09.2011
observation period (ca.) 4 years 2.5 years 3 years 1 month 3 months




of specific features of changes that were performed on any class
by a single user for each dataset. Note that we are interested in
studying collaborative behavior in this paper and hence, provide
an aggregated view on the data based on all users or all classes.
Thus, we always work with a set of distinct sequences where each
sequence corresponds to one single user (user-based) or one sin-
gle class (class-based). In a preprocessing step, we pruned all se-
quences that exhibit less than two elements, for example, if a class
was only ever changed by one user, we removed this specific en-
try from our training set. Note that we have removed all automatic
changes performed in ICD-11 and ICTM for our analyses (see Ta-
ble 1). In Sections 3 and 4, we will closely investigate the following
aspects (and thus sequences) of the activity logs:

(i) Users for Classes. These, solely class-based, sequences consist
of chronologically ordered lists, where each list captures one class,
of users that changed a specific class.

(ii) Change-Types for Classes and Users. Such a sequence con-
tains a chronology of change-types of the performed changes by a
specific user on any class (user-based) or the change-types of the
performed changes for a specific class by any user (class-based).
We aggregated the performed change-types into abstract classes of
changes, which was necessary due to the large variety of different
change-types present in our investigated datasets. All changes that
edit the value of a property of a class have been aggregated (i.e.,
added property, edited property, deleted property). Analogously,
we have aggregated the changes performed on classes (i.e., added
class, moved class, removed class, deleted class).

(iii) Properties for Classes and Users. These sequences consist of
chronologically ordered lists of properties changed by a specific
user of any class (user-based) or the properties changed for a spe-
cific class by any user (class-based).

Note that we were not able to conduct the Change-Types for
Classes and Users and Properties for Classes and Users analyses
for NCIt. The reason for this is the existence of a specific feature
in the ontology-editor that is used to develop NCIt, which allows
contributors to queue changes and commit batches of changes si-
multaneously to the ontology.

3. EXPLORING ACTION SEQUENCES

In this section we explore the nature of our action sequences
at hand. We first investigate randomness and regularities in Sec-
tion 3.1 and then continue to extract common sequential patterns in
Section 3.2.

3.1 Randomness and Regularities

To begin with, we are interested in determining whether our data
sequences are produced in random fashion or based on some reg-
ularities. One common way to investigate randomness in such se-
quences or time series is to use autocorrelation with varying lags
[6]. This method builds on Pearson’s product-moment correlation
coefficient which determines linear relationships between lagged
variables. Contrary, in our paper, we work with categorical data in
our sequences (e.g., properties) which is why the autocorrelation
method is not directly applicable to our problem at hand.

Another way of determining randomness in data sequences is the
so-called runs test which is also more specifically entitled Wald-
Wolfowitz runs test [35, 7]. It is a non-parametric test in which
the null hypothesis (the sequence was produced randomly; the el-
ements of the sequence are independent to each other) is tested
against the alternative hypothesis stating that the sequence was not
produced randomly. In particular, the null hypothesis gets rejected
if the total number of runs — a run is a series of identical values
(e.g., the sequence “AABA" has three runs “AA", “B" and “A")

— is too small leading to a clustered arrangement or too large re-
sulting in a systematic arrangement [21]. Predominantly, the test is
only suited for sequences with binary or dichotomous observations.
O’Brien and Dyck [21] adapted the initial method by proposing a
test that is based on a linear combination of the weighted variances
of run lengths. This approach can now be extended to also work
with categorical observations which is required for our analyses.?
We exemplarily applied this method on our individual ICD-11 se-
quences, and can clearly see that a significant proportion of se-
quences is produced in a non-random way. This is imminent as
the null hypotheses regularly gets rejected (p-value below 0.05) —
e.g., the null hypotheses gets rejected for more than 60% of all user
property sequences. Our observations in this section warrant fur-
ther investigations of patterns and structural properties in these se-
quences. Hence, we next focus on investigating how these present
regularities in our sequential patterns look like; i.e., we focus on
mining common sequential patterns.

3.2 Sequential Pattern Mining

Given our observations made in Section 3.1, we are now inter-
ested in actual sequential patterns that account for the regularities
in the activity logs. There do exist a variety of algorithms to ex-
tract the most frequently used sequential patterns from a set of se-
quences. We make use of PrefixSpan [22] to investigate commonly
used sequential patterns in collaborative ontology-engineering project
change-logs, as the algorithm concentrates on expanding (or grow-
ing) frequently used patterns and strictly matches only patterns to
sequences that are completely identical (i.e., do not exhibit gaps
or skipped elements). Support for sequential pattern mining algo-
rithms, a measure to determine how frequent certain patterns are
observed in the data, is usually defined as the percentage of all in-
vestigated paths that contain a given pattern. Note that all paths
have to be chronologically sorted and patterns only consist of suc-
ceeding states. For example, the pattern “AB” is not present in the
sequence “ACBA”, as “B" never immediately succeeds “A”.

PrefixSpan first scans all available sequences and denotes the
number of occurrences for each element in all sequences. It then
stores the occurrences and the remainder of the sequences (the suf-
fix) and uses the most frequently used sequential patterns as prefix
requirement for the next iteration. Analogously, the prefix is again
expanded until a certain level (minimum) support is reached.

We have applied PrefixSpan on the five collaborative ontology-
engineering project datasets to see if and to what extent such se-
quential patterns are present. As can be seen in Figure 2(a), Pre-
fixSpan was able to extract between 5 to 500 patterns for the Pre-
dicting Users for Classes analysis across all five datasets with a
support of 0.2 to 0.4. This means that the identified sequential pat-
terns are present in 20 to 40 percent of all investigated sequences.
Figures 2(b) and 2(c) show the number of identified patterns of
lengths 1 to 4 for support levels of 0.0 to 0.2 and 0.2 to 0.4. Similar
observations could be made for the other analyses.

Given the high number of sequential patterns of lengths 2 to 4 we
argue that such patterns play a crucial role in the contributor logs
of collaborative ontology-engineering projects at hand. Hence, we
believe that there might be some dependence between subsequent

2We make an implementation of this method available online at
https://github.com/psinger/RunsTest. Note though that
the method has some limitations. For example, there have to be
more than one distinct run length for an element, more than one
success run and the number of successes minus the number of suc-
cess runs of an element has to exceed one. For more details please
refer to [21] and the source on github. Hence, we only recommend
to perform the test on “somewhat” longer sequences with more runs
which is the case for our data at hand.
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Figure 2: Results of the PrefixSpan analysis on the Predicting Users for Classes Sequences: Figure 2(a) shows the number of extracted
patterns (y-axis; log-scale) by PrefixSpan for a given support range (x-axis). Support is defined as the percentage of paths that exhibit
a certain pattern. For example, the roughly 500 sequential patterns extracted for ICTM with a support level of 0.2 - 0.4 are all present
in 20 to 40 percent of all analyzed sequences. Furthermore, Figures 2(b) and 2(c) depict the length (x-axis) and number (y-axis; log-
scale) of patterns found for each dataset for support levels 0.0 - 0.2 and 0.2 - 0.4.

elements in a sequence — i.e., memory effects might be in play (see
also Rosvall et al. [25] for a discussion surrounding memory in net-
works). Consequently, we want to incorporate these potential mem-
ory effects into our model approach in the next section, in which we
resort to Markov chain models of varying order. The goal is to find
a model that can describe action sequences and predict user actions
in a sound way.

4. MODELING ACTION SEQUENCES

As our main goal of this work is to predict user actions in collab-
orative ontology-engineering projects, we need to find an appropri-
ate model that we can fit to the data and leverage for prediction. Our
choice falls on Markov chain models which are suitable for model-
ing categorical sequences. Specific variations of model parameters
allow us to incorporate our findings of Section 3; i.e., that regular-
ities and specifically, serial dependence seems to play a role in the
action sequences at hand. Consequently, we first give a brief intro-
duction into Markov chain models in Section 4.1 also elaborating
a way to incorporate our observations about regularities and pat-
terns in the action sequences. Finally, we will explain two model
selection techniques in Section 4.2, which is crucial for deciding
between different models, which will help us to evaluate the per-
formance of our models. We then apply the methods established in
this section in Section 5.

4.1 Markov Chains

A Markov chain is a stochastic process that models transitions
from one state to another based on a given state space S. It usually
is referred to as memoryless which constitutes the so-called Markov
property stating that the next state only depends on the current state
and not on a series of preceding ones. We now briefly provide an
introduction to Markov chains; we point the interested reader to a
more thorough introduction in previous work [27, 37].

For such a first-order Markov chain® — a sequence of random
variables X1,X>, ..., X, — the following holds:

3For our chains we assume fime-homogeneity, i.e., the probability
of transitions is independent of 7.

P(XYH-] :xn+l|Xl :x]7X2 :x2a"'7X}’l :xﬂ) =
P(Xn-H :xn+1|Xn :xn) (D

Motivated by our observations in Section 3, where we could see
that at least some sequences are arranged in a non-random way —
i.e., dependence between elements in a sequence — as well as where
we could identify longer sequential patterns to be present in our
sequences, we are now also interested in extending this notion of
memorylessness of Markov chains to also include memory effects.
This means, that we not only want to model the next state as being
dependent on the current state, but also on a sequence of preceding
states (memory effect). Hence, we now also look at Markov chain
models of order k where the future depends on the past k states.
We can define a Markov chain model of order k as a process that
satisfies:

P(XH+1 :xl‘l+1|X1 :X17X2 :x27"'7XI’L :xn) =
P(Xn+1 :xn+1|Xn =X, Xn—1 = Xn—1,-+
Xp—kt1 = Xn—k+1) 2

Such higher order chains can be modified to a first-order Markov
chain by using a state space of compound states of size k*; i.e., the
state state includes all sequences of length k which finally leads
to a set of size |S|¥|S| (see [27] for details). Additionally, we also
introduce a so-called zero-order Markov chain model where k = 0.
In such a model the next state does not depend on any other one but
we can see this as a weighted random selection that should serve as
a baseline for our Markov chain models of varying order.

A Markov chain model is represented by a stochastic transition
matrix P if the state space is finite (which it is in our case). This
matrix contains the transition probabilities of a state x; to another
state x; for all possible combinations; the probabilities of each row
sum to one. The elements of this matrix represent the parameters

4We prepend k reset states and append one reset state to each se-
quence so that we "forget" the history of other sequences in the
dataset [9].



6 that we have to determine. For doing so we resort to Bayesian
inference (see [30, 27] for details). We use a Laplace prior for the
inference process —i.e., we set each o;; = 1.

4.2 Markov Chain Model Selection

As we are interested in modeling memory in the process, we
model the data with a set of models with varying orders k and con-
sequently, have to evaluate the performance of each model leading
to a determination of the most appropriate order out of this set.
We need to note that lower order models are always nested within
higher order ones by definition and hence, higher order models will
always fit at least as good as lower order ones. Nonetheless, such
higher order Markov chain models need exponentially more param-
eters and thus may result in severe overfitting.

First, we apply Bayesian model selection [30, 27] giving us a tool
to decide between an array of models. The benefit of this method is
that it naturally includes a Occam’s razor, which means that higher
order models receive a penalty due too much higher complexity,
which can help us to avoid overfitting and give us insights into sig-
nificance [17].

As a second method for evaluating varying order Markov chain
models we use a stratified® k-fold cross-fold validation®. Follow-
ing the concepts of Singer et al. [27] and Walk et al. [37] we train
the Markov chain models on each training set and validate the pre-
dictive power on the test set. First, we rank the probabilities of
each row in the transition matrix — which are the expectations of
the Bayesian posterior — using modified competition ranking that
includes a natural Occam’s razor for higher orders. Next, we deter-
mine the rank of each transition of the test set —i.e., from each start
state to each target state — and henceforth, average over all transi-
tions in the test set. Finally, we average over all folds and visualize
the results. Note that the best accuracy to be achieved would be one
as this would mean that each transition in the test set would be the
highest probability of the transition matrix learned from the train-
ing set. This method also directly gives us a prediction accuracy
of each model that can provide us with insights into the general
prediction performance of a model.

S. PREDICTING USER ACTIONS

In this section we present results for fitting and evaluating (via
prediction) the Markov chain models of varying order for all con-

3Stratified refers to the fact that we try to keep the number of ob-
servations equal in each fold.

%Note that the number of folds is determined individually for each
evaluation due to their stratified nature.

ducted analyses (see Section 4.2). We were not able to conduct
all analyses for NCIt, as the ontology editor used for developing
NClIt exhibits some special functionality, which makes it impossi-
ble to extract chronologically ordered change-types and properties
(cf. Section 2).

5.1 Predicting Users for Classes

The Bayesian model selections (see Table 2) mostly suggest first-
or second-order Markov chain models to be appropriate fits for the
underlying data. Only for NCIt a higher order —i.e., a fifth-order —
is suggested. In order to study the predictive power of these varying
order Markov chain models, we conducted a stratified 3-fold cross-
fold validation task (see Figure 3(a) and Table 2) which mostly
agrees with our Bayesian model selection results in terms of or-
der appropriateness. This means, that a first- (ICD-11, ICTM and
BRO) or second-order (NCIt and OPL) model are shown to have
the best predictive power throughout all datasets (accounting for
overfitting).

The results indicate that the next event in a sequence seems to be
dependent on at least the previous one; partly, also on a sequence of
previous states (memory effects). Such Markov chain models (of
first or second order) can be used for predicting the next contrib-
utor for a class while simultaneously compensating for overfitting.
An average position of mostly below two can be achieved with the
corresponding best working model.

This tells us that we have a well-working tool for predicting
the user that is most likely changing a class next. We may lever-
age this for recommending classes to users which are eligible for
change. By doing so we may manage to severely improve the work-
flow of users as they may not need to tap into their own intuitions
about which class to change next. Also, this process could improve
the quality of some classes by automatically finding experts who
should edit the class.

5.2 Predicting Change Types for Users

The Bayesian model selection (see Table 2) suggests a fourth-
order Markov chain model for ICD-11 and ICTM, a second-order
model for BRO and a first-order model for OPL. Subsequently,
we conducted a 3-fold stratified cross-fold validation for ICD-11
and ICTM and a 2-fold stratified cross-fold validation for OPL and
BRO, due to the smaller number of users available in the latter two
datasets (see Figure 3(b) and Table 2). The results suggest that a
third-order Markov chain model performed best for predicting the
change-type a user is going to perform next for ICD-11. For ICTM
and OPL a second-order yielded the best prediction results, while
a first-order Markov chain model performed best for BRO. The

Table 2: The results for all datasets and all analyses conducted in Section 5. Rows marked with CV indicate the order of the best-
performing Markov chain models of our stratified cross-fold validation task (Section 4.2). Rows marked with Bayes depict the order
of the Markov chain models determined by the Bayesian model selection task (Section 4.2).

ICD-11 | ICTM | NCIt | BRO | OPL
Predicting Users for Classes (Section 5.1) B(aj}\/,es ? } ; % g
Predicting Change Types for Users (Section 5.2) B(a:)\/]es ;1 3 : % ;
Predicting Change Types for Classes (Section 5.3) B(a:)\//es j ; : % g
Predicting Properties for Users (Section 5.4) B(a:)\/,es ? } : ? g
Predicting Properties for Classes (Section 5.5) Bé)\/]es ? } : ; g
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Figure 3: Results for the Stratified Cross-Fold Validation analysis: The plots depict the results of the stratified cross-fold validation for
all five datasets for the conducted analyses. The filled elements represent the Markov chain model for each dataset, which achieved
the best (lowest) average accuracy (position) score in the prediction tasks. The position score is calculated by determining the position
of the next most likely state to occur in a test path given & previous states, where k represents the investigated Markov chain order.
Probabilities to select the next most likely state are created using the training set to calculate the transition maps for all datasets and
Markov chain orders. The figures show that we can model activity sequences for all of our analyses as first- or higher-order Markov
chain models perform best in our prediction task for all datasets, with the only exception of OPL for the Predicting Properties for

Users analysis (see Figure 3(d)).

cross-fold prediction task also yielded an average accuracy (posi-
tion) between roughly 1.8 and 3.5.

This indicates that higher-order Markov chains can be used for
predicting the change-type a user is most likely to perform next.
Practitioners may use this information for recommending change
types users should edit next. By doing so we may help to improve
the overall progress and quality of the ontology; e.g., if we know
that several areas of the ontology or classes lack certain changes,
we can steer contributors, which exhibit a preference to perform
these kinds of changes, into a specific direction and enforce their
contributions in certain branches of the underlying knowledge rep-
resentation.

5.3 Predicting Change Types for Classes

As depicted in Table 2 the Bayesian model selection suggests a
second-order Markov chain model for BRO and OPL, while a third-
order model for ICTM and a fourth-order Markov chain model for

ICD-11 work best. A stratified 3-fold cross-fold validation (see
Figure 3(c) and Table 2) completely agrees with these results for
all datasets. The best fitting Markov chain models allow for an
average prediction accuracy (position) between 1.8 and 2.0.

The presented results indicate that we can predict the change-
type that is most likely conducted on a class next, given at least
the two most recent changes on said class as input for our trained
Markov chain models. Similar to predicting change types for users,
practitioners can use this information for recommending change
types that may be useful to change next on a given class. For exam-
ple, if a class is most likely to receive a certain change type next, we
can combine this information with the change types for users and
identify a suitable contributor to recommend this class for editing.

5.4 Predicting Properties for Users

The Bayesian model selection yields a second- and first-order
Markov chain model for ICD-11 and ICTM and a third- and fourth-



order model for BRO and OPL (see Table 2). The conducted 3-fold
stratified cross-fold validation, to predict the property a specific
user is most likely to change next, yielded a first-order Markov
chain model for ICD-11 and ICTM (see Figure 3(d) and Table 2).
Due to a limited number of users, a stratified 2-fold cross-fold vali-
dation was conducted for BRO and OPL, which showed that a first-
and zero-order Markov chain model performs best for predicting
the next property for a given user respectively. This means that
there was no difference between the Markov chain models trained
for OPL and randomly (weighted) choosing (zero-order) the prop-
erty a user is most likely to change next.

This also means, that for ICD-11, ICTM and BRO we were able
to show that subsequent properties users change are dependent on
each other; at least for an order of one, which allows for an average
prediction accuracy between 1.9 and 2.2. For OPL, the Bayesian
model selection and the cross validation approaches do not directly
agree with each other; i.e., the Bayesian method suggest an order
of four while, interestingly, cross validation would prefer an order
of zero (weighted random selection).

In general, by using at least first-order Markov chains it is pos-
sible to predict the property a user is most likely to change next
for all datasets, except OPL. For steering users into the right direc-
tion, we may recommend appropriate properties to change next to
contributors.

5.5 Predicting Properties for Classes

Our Bayesian model selection results (see Table 2) suggests for
ICD-11 and ICTM a second- and first-order Markov chain model
respectively. Furthermore, the results indicate that for BRO a third-
and for OPL a fifth-order seem to be appropriate. A stratified 3-fold
cross-fold validation (see Figure 3(e) and Table 2) yielded the same
results, except for ICD-11, where a first-order model, instead of a
second-order model, represents the best predictive accuracy for the
underlying data. The conducted cross-fold validation prediction
task yielded an accuracy (average position) between roughly 1.8
and 2.4.

Again, our results indicate that we can predict the property that
is changed next for a given class reasonably well by using at least a
first-order Markov chain. Similar to predicting properties for users,
we may now enhance the overall quality of the ontology in an au-
tomatic way by aligning the gained information with the proper-
ties derived from our user analysis results and recommend users to
change specific suitable properties of classes next.

6. SUMMARY AND DISCUSSION

In the previous sections we have studied action sequences of
five collaborative ontology-engineering projects from the biomed-
ical domain (see Section 2). To begin with, we provided an initial
analysis regarding regularities and sequential patterns in Section 3
to give a basic insight into the processes underlying the user action
sequences at hand. First, we started by looking at randomness and
regularities by applying an adopted version of the so-called runs
test exemplary to the ICD-11 dataset in Section 3.1. Our results
clearly indicated that a significant array of sequences, based on dif-
ferent features, are produced in a non-random way; this means that
at least a portion of sequences is produced in a clustered or sys-
tematic arrangement. These observations warranted further stud-
ies regarding detailed insights into how these potential regularities
look like; hence, we focused on mining sequential patterns next
(see Section 3.2). We applied PrefixSpan on our User sequences
and could identify numerous sequential patterns of longer length
— specifically lengths 2 to 4. This lead us to the conclusion that
longer patterns seem to play a crucial role in contributor logs of

collaborative ontology-engineering projects and that there might
be a dependence between subsequent elements in the sequences
at hand. Consequently, we hypothesized that it would be beneficial
to consider memory effects when modeling our data, and thus user
actions. This means, that we wanted to incorporate information of
the past into deriving future information — for example, it might
be useful to check the two past properties a user has changed for
predicting the property she will most likely change next.

For doing so we resorted to Markov chain models of varying
order (see Section 4.1) that we applied to our data. We used a
Bayesian model selection method for finding the appropriate or-
der for each set of sequences at interest. Supplementary, we were
interested in investigating the predictive power of such models,
which we evaluated using a cross validation task as described in
Section 4.2. The results, as shown in Section 5, confirm our hy-
potheses: It is indeed useful to incorporate memory effects into the
process of modeling user contribution in collaborative ontology-
engineering projects. This is particularly imminent as several higher
order models are to be preferred throughout all investigations, as
can be seen in Table 2. For example, an order of three means that
we can best model or predict the next event (e.g., property) by look-
ing at the past three events in a sequence — hence, memory effects
are in play. We need to note that all our applied methods com-
pensate the goodness of fit with the corresponding complexity of a
model, thus, we penalize higher orders (Occam’s razor) which is a
necessary step for accounting for potential overfitting.

We can see that both the Bayesian model selection as well as
the cross validation prediction task mostly result in similar order
suggestion even though they are based on distinct approaches. If
the outcome of both methods differ, we can for the most part ob-
serve that the cross validation method ensues slightly lower orders
than the Bayesian method. This can be explained by the different
ways both methods work. The Bayesian method always learns the
Markov chain model on the complete model and then performs a
model selection strategy which is based on comparing the posterior
probabilities of varying order models. Contrary, the cross valida-
tion technique learns the Markov chain on a different set (train-
ing) compared to where it is evaluated (testing). These differences
also account for the drastic mismatch observed between the cross-
fold validation prediction task and the Bayesian model selection
for OPL in our Predicting Properties for Users analysis, where
only a very limited number of sequences (three) with unevenly dis-
tributed properties across these sequences, is available. Also, the
way we rank the probabilities in the cross validation evaluation
influences the outcome. Currently, we use modified competition
ranking which assigns the worst rank to ties and hence, we very
strictly penalize higher orders. Hence, it comes to no surprise for
us that if different, the cross validation mostly suggest lower or-
ders than the Bayesian approach. One advantage of the Bayesian
approach though is that we could further incorporate penalizations
of higher orders when working with model selection; e.g., using an
exponential prior [27].

In general, the application of Markov chains on the activity logs
of five collaborative ontology-engineering projects has shown that
regularities exist. These regularities can potentially be used and ex-
ploited by project and community managers to augment and assist
users in contributing to the underlying structured knowledge rep-
resentation. For example, knowing which property a user is most
likely to change next and which user is most likely to change a spe-
cific concept next could be used to automatically adjust and modify
the interface to allow for quicker and personalized workflows. This
is especially important for projects the size of ICD-11 or NCIt with
thousands of potential classes to contribute to.



We also need to note that the corresponding orders that get sug-
gested might also be — at least to some extent — influenced by how
the sequences are shaped; i.e., potential influence factors might be:
the distribution of the length of sequences or the number of se-
quences in a dataset. However, we can argue that these are also
properties emerging from how users behave in such systems. Yet, if
we are specifically interested in comparing the models of different
datasets we need to look deeper into these factors which we leave
open for future work. Furthermore, we only work with limited data
which also influences the choice of order. Precisely, the number of
distinct states as well as the number of observations affect the ap-
propriate order. Basically, the more states one works with, the more
difficult it is to compensate the much higher complexity of higher
order models with the goodness of fit. Also, we do not necessarily
know what would happen if we would perform our investigations
on an unlimited number of observations; most likely higher orders
will then statistically significantly outperform lower ones (that we
e.g., found in our studies) — notwithstanding, working with limited
data is a common scenario for researchers and practitioners war-
ranting our experiments and findings.

7. RELATED WORK

The work presented in this paper was inspired by work of the fol-
lowing research areas: Collaborative ontology-engineering, Markov
chains and sequential pattern mining.

7.1 Collaborative Ontology Engineering

An ontology represents an explicit specification of a shared con-
ceptualization [14, 5, 32]. In computer-science, this definition usu-
ally refers to a construct (formalization) that is automatically pro-
cessable by a machine representing an abstraction of the real world
(shared conceptualization). Ontologies allow computers to “under-
stand” relationships between entities and objects that are modeled
in an ontology.

On the other hand, collaborative ontology engineering represents
a new field of research with many new problems, risks and chal-
lenges. Contributors of such projects, similar to Wikipedia, engage
remotely (e.g., via the Internet or a client—server architecture) in the
development process to create and maintain an ontology. As men-
tioned, an ontology represents a formalized and abstract represen-
tation of a specific domain; thus, disagreements between authors on
certain subjects can occur and tools are needed that augment col-
laboration and help contributors in reaching consensus when mod-
eling these (and other) topics. Indeed, the majority of the literature
about collaborative ontology engineering sets its focus on survey-
ing, finding and defining requirements for the tools used in these
projects [20, 13]. Various tools have been developed, specifically
aiming at supporting the collaborative development of ontologies.
For example, Semantic MediaWikis [18] and its derivatives [2, 12,
26] add semantic, ontology modeling and collaborative features to
traditional MediaWiki systems.

Protégé, WebProtégé [34] and its extensions and derivatives for
collaborative development are prominent stand-alone tools that are
used by a large community worldwide to develop ontologies in a
variety of different projects. Both WebProtégé (and its derivatives)
and Collaborative Protégé have shown to provide a robust and scal-
able environment for collaboration and are used in several large-
scale projects, including the development of ICD-11 [33].

For analyzing and visualizing the collaborative processes that oc-
cur during these projects, Poschko et al. [24] and Walk et al. [36]
have developed PragmatiX, a tool that allows to visualize and an-
alyze aspects of the history of collaboratively engineered ontolo-
gies. The tool also provides quantitative insights into the ongo-

ing collaborative development processes. Falconer et al. [11] in-
vestigated the change-logs of collaborative ontology-engineering
projects, showing that users exhibit regularities in their contribution
behavior when editing to the ontology. Strohmaier et al. [31] ana-
lyzed the collaborative processes in a number of different collabo-
rative ontology-engineering projects by investigating hidden social
dynamics and provide new metrics to quantify various aspects of
these engineering processes. Wang et al. [39] used association-rule
mining to analyze user editing patterns in collaborative ontology-
engineering projects.

7.2 Markov chain models

In previous Web studies, Markov chain models have been fre-
quently applied for understanding and modeling Web navigation
(e.g., [23, 10, 42]). Mostly, the used Markov chain models were
memoryless following the Markovian assumption which is e.g.,
also modeled in the random surfer model in Google’s PageRank([8].
Nonetheless, various researchers were also interested in studying
the appropriateness of modeling memory effects into models of hu-
man navigation — i.e., using higher order chains (e.g., [4, 23]). Yet,
the studies revealed that the benefit of higher orders can frequently
not compensate the higher complexity and the first-order Markov
chain model seems to be a plausible choice. Recently, Chierichetti
et al. [9] turned towards again questioning the choice of a first-
order chain for modeling human navigation and suggested that the
Markovian assumption might be wrong. Consequently, Singer et
al. [27] introduced a series of precise model selection techniques
for choosing the appropriate Markov chain order. They applied
the framework to a series of human navigational datasets and again
showed that the memoryless model indeed seems to be a plausible
abstraction for human navigation based on the lack of statistically
significant improvements of higher order models mostly due to the
much higher complexity as already pointed out several years ago.
However, the authors also showed that human navigation on a top-
ical level reveals memory effects. Walk et al. [37] adopted this
framework to be applicable to structured logs of changes in collab-
orative ontology-engineering projects and investigated the structure
of first-order Markov chains for the change-logs of five different
collaborative ontology-engineering projects [38].

7.3 Sequential Pattern Mining

In 1995, Agrawal and Srikant [1] have first addressed the prob-
lem of sequential pattern mining. They stated that given a collec-
tion of chronologically ordered sequences, sequential pattern min-
ing is about discovering all sequential (chronologically ordered)
patterns weighted according to the number of sequences that con-
tain these patterns. The algorithms presented in Agrawal and Srikant
[1], in particular AprioriAll and AprioriScale, represent the first a
priori sequential pattern mining algorithm. In 1996, Srikant and
Agrawal [29] further included time-constraints and sliding win-
dows to the definition of sequential patterns and introduced the gen-
eralized sequential pattern algorithm (GSP). This means that a spe-
cific pattern cannot occur more frequently (above a threshold) if a
sub-pattern of this pattern occurs less often (below that threshold).
Many other examples of a priori algorithms have been discussed
in literature [19, 40, 3], with SPADE [41] being one of the most
prominently used and referred to algorithms. One major problem
assigned to the a priori based sequential pattern mining algorithms
was (in the worst case) the exponential number of candidate gener-
ation. To tackle this problem so called pattern-growth approaches
have been developed [15, 22].

Many researchers have adapted different algorithms and approaches
for different domains to anticipate changing requirements, such as



[16] who analyzed algorithms for sequential pattern mining in the
biomedical domain. In Walk et al. [37] the authors have presented a
novel application of Markov chains to mine and determine sequen-
tial patterns from the structured logs of changes of collaborative
ontology-engineering projects.

For the analysis presented in this paper we made use of PrefixS-
pan [22] to investigate if the change-logs of collaborative ontology-
engineering projects exhibit commonly used, sequential patterns —
we thoroughly introduced this algorithm in Section 3.2.

8. CONCLUSIONS & FUTURE WORK

In this paper our main objective was to predict user actions in
collaborative ontology-engineering projects. To that end, we first
explored if and to what extent regularities and sequential patterns
can be extracted from the change-logs of our five datasets. We
found that at least a set of sequences were produced in a non-
random way and that frequent (longer) patterns can be extracted.
‘We then modeled user actions by using Markov chain models which
allowed us to incorporate our findings about regularities and pat-
terns. We fitted the models to our sequence data and evaluated them
with a specific focus on prediction accuracy. We found that incor-
porating memory effects (serial dependence) into our models can
indeed be useful. The generated predictive models for user actions
can not only be used for various recommendation purposes, but
also provide project administrators and managers with the means
to assess the impact of potential changes on the ontology and the
community. For example, knowing which user is most likely to
change a specific concept next combined with the information of
what kind of change that user is most likely to perform next can po-
tentially be exploited to create personalized task recommendations
or to adapt the user-interface to allow for dynamically assisted and
faster workflows.

In future work, we first want to extend our choice of models
for predicting user action by exploring, for example, varying or-
der Markov chain models, Hidden Markov chain models or Semi
Markov chain models. When fitting these models to the data, we
plan on providing further evaluation comparisons between these
distinct models and consequently, also want to explore the poten-
tial of incorporating memory into these alternative models. Fur-
thermore, we want to look at other data sources (e.g., Semantic
MediaWikis) to be able to produce more general statements, inde-
pendent from the datasource, and also closely investigate the influ-
ence of different data properties as discussed in Section 6.

We strongly believe that the analysis and predictive models pre-
sented in this paper represents an important step towards a better
understanding of collaborative ontology-engineering projects in the
biomedical domain.
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