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ABSTRACT
Recommender systems are an essential component in many e-com-
merce platforms to drive sales and guide customers when exploring
new products. With the increasing adoption of RFID technology
in traditional brick-and-mortar stores, for example, in the form
of smart fitting rooms that allow to display recommendations in
the integrated mirror, retailers have only recently started to tap
into existing product recommendation algorithms. However, due
to limited data availability as well as sparsity, for example due
to assortments adapted for different demographics, traditional re-
tailers largely struggle to leverage this technology. In this paper
we extend the state-of-the-art embedding-based recommender ap-
proach prod2vec by processing information about co-purchased
products (i.e., shopping baskets) in retail stores. By adding point-
of-sale information to shopping baskets we are able to provide
recommendations aimed at individual stores, without having to
maintain separate models for each location. Furthermore, we exper-
iment with data augmentation methods to overcome the imposed
limitations of the available data, and are able to increase the quality
of the computed recommendations by more than 6.9%.
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1 INTRODUCTION
Recommender systems are omnipresent tools to navigate and ex-
plore vast media and product catalogues. Specifically, in the area
of e-commerce, recommender systems are often an integral com-
ponent of the business concepts of successful online retailers, as
they present personalized up- and cross-selling options to their
customers, increasing revenue and business value.
Problem. However, while online retailers are able to exploit the
advantages of recommender systems, traditional retailers (i.e., brick-
and-mortar stores) struggle to leverage the potentials of this tech-
nology for their business. Although integration of such systems
in stores becomes increasingly more feasible due to advances in
ubiquitous computing (e.g., smart fitting rooms, which can detect
products brought into the changing booth and display recommen-
dations in the mirror) a wide adoption of recommender technology
in retail stores is still lacking. The reasons for this are manifold.

First, state-of-the-art recommendation algorithms, such as col-
laborative filtering, typically require large amounts of customer
purchase histories to be able to recommend products. To collect
such data, some retailers adopt the concept of loyalty cards, enticing
customers with special offers, which allow for customer-purchase
association. However, such loyalty programs are often only viable
for large retail chains, due to the resulting organizational overhead.

Second, traditional retailers—particularly fashion retailers—often
struggle with limited and very sparse data. This is due to small,
yet diverse, and fast changing product assortments. For example,
different products and inventory sizes are associated with different
types of stores (e.g., outlets vs. flagship stores) and with different
demographics, for example due to regional differences, leading to
limited and sparse data for computing recommendations. Comple-
mentary data sources, such as product views, typically used by
(small-scale) online retailers to mitigate these problems, are not
available for traditional brick-and-mortar retailers either.

Third, alternatives to collaborative filtering, such as content-
based approaches, which generate recommendations solely based
on the similarity of product properties (e.g., textual descriptions or
pictures), require retailers to keep and maintain detailed databases
of product information of all products in their inventory.
Approach.An alternative recommender approach is the embedding-
based prod2vec [2, 7, 9, 24, 27] algorithm. Similar to content-based
approaches, this algorithm generates recommendations based on
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product similarities. However, instead of using product properties,
it leverages shopping-baskets as the context in which products co-
occur to learn low-dimensional vector representations of products
(i.e., embeddings). Subsequently, product similarities are computed
with standard vector operations, such as cosine similarity.

To tackle the issues related to the application of recommender
systems for traditional retailers we extend prod2vec by (i) adding
point-of-sale information (i.e., the city in which a purchase was
made), which represents an additional location-based context for
product embeddings, and by (ii) applying a novel data augmentation
approach, which strategically leverages existing shopping baskets
to extend product combinations for training our model.

We evaluate our proposed approach on sales data of a total of 20
fashion retail stores owned by a large, international premium cloth-
ing manufacturer. The stores are spread across four different cities
in a large and diverse country, each with their own characteristics
and demographics. With a wide range of experiments on data from
these stores, we are able to improve the quality of the generated
product recommendations and outperform six different baselines.
Contributions. First, we demonstrate that the inclusion of point-
of-sale information in shopping baskets allows us to compile a
common model for all four cities, retaining locality effects. Thus,
we minimize organizational overhead as only a single model has
to be maintained (compared to one model per city). Second, we de-
scribe and evaluate our novel data augmentation technique, which
further improves recommendations, without the need to change the
underlying prod2vec algorithm. Third, we publish our real-world
dataset1 to enable other researchers to re-create and extend our
proposed approach and advance research in the context of recom-
mender systems for traditional retail stores.

We strongly believe that our results represent an important step
towards the application of recommender systems for traditional
retailers, especially in combination with the progressing adoption
of ubiquitous computing devices and the resulting possibilities to
present recommendations to customers.

2 RELATEDWORK
Recommender Systems for Traditional Retailers. While rec-
ommender systems are well researched in the domain of e-com-
merce, the adaption and integration for traditional retailers is still
largely unexplored. Walter et al. [26] provide an overview of the
problem from a business and technical perspective. Keller and Raf-
felsieper [13] propose the Receipt Horizon, which describes the
boundary of what a retailer can learn about their customers. They
extend this boundary by introducing a mobile app that uniquely
identifies customers and introduces additional features, such as
recommendations. Hanke et al. [11] study the adaptability of rec-
ommender systems for smart fitting rooms for fashion retailers, and
show that the introduction of additional information (e.g., weather
conditions) can be beneficial for recommendation performance.
Wong et al. [28] provide recommendations with a rule-based expert
system in a fashion store using smart fitting rooms, while Buser [4]
concentrates on recommendations in grocery stores.

The majority of these studies focus on the integration of recom-
mender systems in retail stores. In this paper, we extend an existing

1https://github.com/detegoDS/shopping_basket_dataset

algorithm to take data sparsity and availability (e.g., due to limited
and fast changing product assortments) into account.
Embedding-based Recommendations. In the domain of natu-
ral language processing (NLP) embedding-based models, which
represent words as low-dimensional vectors, are widely used for
various tasks, such as word analogies [15, 20]. A popular approach
is word2vec [18], which learns word-embeddings by predicting the
context of one word (e.g., its surrounding words). It is based on
the distributional hypothesis [22], which states that words that
appear in the same context are semantically related. In the field of
recommender systems, Barkan and Koenigstein [2] apply word2vec
on shopping baskets from the Microsoft Store and data from the
Microsoft Xbox Music service. Grbovic at al. [9] adapt word2vec to
generate product recommendations (i.e., prod2vec) based on e-mail
recipes received by Yahoo Mail users. They propose an extension
that embeds users as well to provide user-tailored recommenda-
tions. Vasile et al. [25] enhance performance, especially in cold-
start scenarios, by introducing additional metadata (e.g., artists of
songs for music recommendations) to prod2vec. Trofimov [24] uses
browsing sessions containing product views as additional source
of information. Other applications include the recommendations
of home listings to users of the Airbnb platform [7], or matching
advertisements with search queries on Yahoo Search [8].

All of these embedding approaches are situated in an online con-
text. The exception to this is thework ofWan et al. [27], who explore
embedding-based recommendations for grocery stores. They aim
at providing personalized recommendations for regular costumers
by capturing brand loyalty effects (i.e., buying the same products
over a period of time). As we do not posses customer loyalty in-
formation, we base our approach solely on shopping baskets and
complement it with location information. Further, data sparsity is
not as prominent in grocery store settings, as such stores usually
exhibit a higher turnover of larger and less frequently changing
product assortments.
Association Rule Mining. Association rule mining algorithms
(e.g., Apriori algorithm [1]) analyze shopping baskets and generate
a set of rules such as if you are buying diapers, then you may also like
to buy beer2. These algorithms suffer from high computational com-
plexity due to the evaluation of exponentially increasing numbers
of product combinations. Although there are several approaches
that tackle these issues [10, 16, 23] association rule mining is still
based on product counts, neglecting the context of shopping bas-
kets [3, 9] and is not able to capture latent relationships between
products.

In contrast, we adapt an embedding-based approach to capture
hidden interactions between products. Moreover, we extend the
contexts by including additional location information.
Oversampling Strategies.Oversampling strategies are often used
to balance classes in datasets. For example, SMOTE [5] (and its
variants) compute new stochastic synthetic examples based on
underrepresented samples in the dataset. On the other hand, we
leverage existing (subsets of) shopping baskets (i.e., discrete items)
to extract additional information. Further, we apply our method
in the domain of recommender systems rather than classification
problems.

2http://www.dssresources.com/newsletters/66.php
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(a) Point-of-Sale (b) Data Augmentation

Figure 1: Extending and Augmenting Shopping Baskets. In Figure (a) we extend a shopping basket with the city in which the
sale occurred, represented as location marker. Figure (b) depicts our data augmentation approach. We construct additional
shopping baskets consisting of all pairs of products in a given shopping basket. From the given shopping basket composed of
a blue jacket, a red T-shirt and green shoes, we construct three new pairs: {blue jacket, red T-shirt}, {blue jacket, green shoes},
{red T-shirt, green shoes} and add them to the training data.

3 APPROACH
We base our approach on prod2vec [9] to compute d-dimensional
vector representations of products. To learn product embeddings
we leverage co-occurrence information of products in shopping
baskets. More formally, given a set of shopping baskets B, where
each shopping basket B consists of products from the set of products
P , we maximize the following log-likelihood function:

L =
∑
B∈B

∑
pi ,pj ∈B
pi,pj

log Pr(pj | pi ). (1)

The conditional probability Pr(pj |pi ) of observing another product
pj from the same shopping basket (i.e., the context) given the cur-
rent product pi (i.e., the target) is defined by the softmax function

Pr(pj | pi ) =
exp(v⊺pi · v

′
pj )∑

pk ∈P exp(v⊺pi · v
′
pk )
, (2)

wherevp andv ′
p denote the input and output vector representations

for product p. Inferring the remaining products in the shopping
basket based on one product corresponds to the skip-gram archi-
tecture [18] (i.e., predicting the context, given a target).

Optimizing this log-likelihood function is computationally ex-
pensive as we need to compute the normalization term at each step.
The corresponding sum iterates over dot products of the embed-
ding of pi with embedding of every other product in P (i.e., this
computation is linear in the number of products). Therefore, we use
a hierarchical softmax [19] to approximate the conditional proba-
bilities, which represents the softmax layer as binary tree allowing
the computation of conditional probabilities in logarithmic time.
Point-of-Sale. Different environments and demographics affect
purchase behavior of customers of traditional retailers. We address
this influence by extending each shopping basket with the informa-
tion of the city in which a sale occurred (see Figure 1a). Therefore,
the proposed extension does not require any adaption to the un-
derlying prod2vec algorithm itself, as we only extend the set of
products P with a unique identifier for each city and add the corre-
sponding identifier to the shopping baskets. However, we only use

this additional information during training and remove the result-
ing embeddings for the cities from the vector space afterwards, to
avoid recommending cities.

In general, our proposed extension is similar to the doc2vec
model [14], which in addition to nearby words also adds the para-
graph in which a word occurs to the training data. This allows the
algorithm to learn vector representations of documents, which can
later be used to predict words for a given document.
Data Augmentation. To tackle the problem of limited data in
retail stores we strategically augment the available data. The most
important piece of information contained in shopping baskets is
which products were bought together (i.e., the co-occurrence of
products), which is a pairwise relationship. Therefore, we generate
all

(m
2
)
pairs of products for each shopping basket B ∈ B with more

than two products, wherem = |B | denotes the basket size. We add
all generated pairs to the set of training examples for the model (see
Figure 1b for an example). Next, we construct product triples from
shopping baskets to capture and introduce more complex contexts
for shopping baskets with more than three products. We limit our
construction of additional shopping baskets to pairs and triples due
to increasing (exponential) number of larger shopping baskets that
could be generated.

In addition to generating new shopping baskets, we also replicate
the existing ones in the training set. We apply various replication
strategies depending on the size of a given shopping basket (i.e.,
similar to oversampling). In particular, we copy a shopping basket
B of sizem so that it occursm-times in the training set. Further, we
investigate different degrees of shopping basket replication, which
increases the number of generated replicas even further. Specifically,
in addition to replicating a shopping basket of sizem exactlym-
times, we also duplicate a given shopping basket (i) 2m-times, and
(ii)

(m
2
)
-times.

Computing Recommendations. We compute recommendations
by finding the k nearest neighbors of a product in d-dimensional
vector space of the product embeddings. The distance (or similarity)
between two product vectors is determined by their Euclidean dis-
tance. Note that we have also evaluated cosine similarity as distance
metric, but achieved better results using Euclidean distance.
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Figure 2: Empirical Shopping Basket Size Distribution. We
show sales limited to shopping baskets with two or more
products.Most products are sold in pairs or triples. However,
we also observe larger shopping baskets (i.e., up to 40 differ-
ent products; see inset) in our dataset.

4 EXPERIMENTAL SETUP
4.1 Dataset & Preprocessing
Our dataset consists of roughly half a million shopping baskets
from 20 stores located in four different cities (Metropolis, Gotham
City, Springfield, and Riverdale; anonymized with fictional city
names) between November 2016 and December 2018.
Limited Data Availability. We infer product recommendations
based on products that were bought together. Therefore, we first dis-
card all shopping baskets consisting only of a single product. This
reduces the number of examples available for training to 146,720.
Furthermore, we also remove duplicate products from shopping
baskets, as we do not gain any additional information for recom-
mendations whenever the products occur multiple times in the
same context. This leaves us with approximately 66 purchases per
week per store on average, which reflects that goods are typically
sold consistently, but in smaller volumes in these stores. In Figure 2
we depict the empirical distribution of shopping basket sizes. Note
that these distributions are consistent over all cities.
Data Sparsity.We find more than 17,000 distinct products which
are present in at least one shopping basket in our dataset. How-
ever, available products differ between cities. The average product
assortment similarity, which we calculate using the mean Jaccard
similarity coefficient between all city pairs, is 0.51. Hence, we find
that the product assortments of stores in the four different cities
are adjusted to local conditions and demographics. We list a more
detailed breakdown of the key characteristics with respect to the
number of shopping baskets and products by city in Table 1.

The number of distinct (unique) shopping baskets is roughly
124,000, which is close to the total number available in our dataset,
indicating a heterogeneous buying behavior of customers. The
average shopping basket in the dataset contains 2.8 products, which
means that most of the time customers only buy few products (cf.
Figure 2).

4.2 Experiments
Training Strategies & Baselines. For our experiments we dif-
ferentiate between two general training strategies. The first is an
individual setup, which uses the shopping baskets belonging to one

city to fit a model for this specific city. We prefix these models in
our work as individual-cities approaches. The second is a common
setup, which combines the training data from all four cities to fit a
single, common model for all of them. We refer to these as all-cities
models. We evaluate the models of both training strategies for each
city separately (i.e., on shopping baskets of the individual cities).

We combine our two training strategies (i.e., individual-cities and
all-cities) with three different baseline approaches to obtain a total
of six baselines. In the evaluation step, we compare our approach
against these six baselines. In particular, three baseline approaches
consist of two simple count-based approaches and a prod2vecmodel
(prod2vec) without any extensions. Count-based approaches include
(i) a popularity, and (ii) a co-purchase approach. The popularity ap-
proach always recommends the k products that appear most often
in the training data, whereas the co-purchase approach is compiled
by counting how often a pair of products co-occurs in shopping
baskets. Recommendations in the co-purchase approach include k
products with the highest co-occurrence for a query product. Com-
bining these three baseline strategies with two training strategies
results in the following six baselines: individual-cities popularity,
individual-cities co-purchase, individual-cities prod2vec, all-cities pop-
ularity, all-cities co-purchase, and all-cities prod2vec.
Point-of-Sale. In the first experiment, we additionally introduce
the point-of-sale information (which we refer to as POS in our
model names) to the all-cities prod2vec model. In particular, we
explicitly introduce location context to the shopping baskets (see
Figure 1a) and compare its performance against our six baselines.
We denote this approach all-cities POS-prod2vec.
Data Augmentation. In our second experiment we compare sev-
eral data augmentation approaches. First, we investigate differences
in performance for all-cities prod2vec models, which we train using
our training data as well as generated shopping baskets. To that end,
we compile a model which uses the initial shopping baskets and
our generated product pairs (i.e., all-cities pair augmented prod2vec
approach; see Figure 1b). Further, we build an additional model
for which we, in addition to product pairs, also add product triples
from the training data whenever possible (i.e., for each shopping
basket consisting ofm > 3 products). We denote this approach as
all-cities pair and triple augmented prod2vec.

Table 1: Dataset Properties. First, we list the number of sales
(# shopping baskets) with more than one product for each
city (names have been anonymized) and the corresponding
percentage, as well as the number of distinct products for
each city (# products). Further, we state the mean product
overlap for each city compared to all others. The overlap is
calculated using Jaccard similarity coefficient (i.e., intersec-
tion over union) of the product sets of city pairs.

# shopping baskets # products mean product overlap

Metropolis 31,583 (21.53%) 11,819 0.47
Gotham City 30,269 (20.63%) 9,318 0.51
Springfield 53,108 (36.20%) 11,313 0.54
Riverdale 31,760 (21.65%) 9,597 0.53

Total 146,720 (100.0%) 17,392



For our shopping basket repetition experiments we duplicate
baskets (i)m, (ii) 2m-times, and (iii)

(m
2
)
-times. Note that the num-

ber of replicated shopping baskets in the last experiment coincides
with the number of pairs we generate in our proposed all-cities pair
augmented prod2vec model. We denote approaches fitted with repli-
cation as all-cities x-replicated baskets prod2vec models, whereas x
is a placeholder for the degree of repetition (i.e.,m, 2m , or

(m
2
)
).

Combined Approaches. In our third experiment we study the
effects of combining the point-of-sale information and data aug-
mentation. Thus, we first introduce point-of-sale information and
then perform data augmentation on the extended shopping bas-
kets. Hence, we obtain models such as all-cities pair augmented
POS-prod2vec or all-cities pair and triples augmented POS-prod2vec.

Finally, we evaluate the performance of an ensemble approach,
which is a combination of the best performing models. Vasile et
al. [25] already demonstrated in their work that an ensemble can
further improve recommendation quality when using embedding-
based recommendation algorithms.
Model Parameters. We perform grid search over prod2vec hy-
perparameters using a 90/5/5 train, validation and test-set split to
identify the model configuration which yields the best results for
our experiments. Specifically, we evaluate all combinations for the
dimension of the product embeddings d starting from 40 to 140 in
increments of 20 and training epochs n for the gradient descent
algorithm from 80 to 230 epochs. For the best performing configu-
ration we obtain d = 60 trained with stochastic gradient descent
over n = 100 epochs.

Furthermore, for trainingwe randomly downsample high-frequent
products from shopping baskets according to the formula proposed
for the word2vec model with a threshold t [18]. This reduces the
influence of frequently bought ‘everyday products’, which are sold
often but do not provide valuable information for recommendations
(e.g., socks). Additionally, we set a minimal total frequency of q for
a product and remove all which do not satisfy this condition. We
perform grid search over t ∈ {0.1, 0.01, 0.001} and q ∈ {5, 10, 20}
and find the best configuration with t = 0.001 and q = 5. Note that
we do not downsample or remove point-of-sale information from
shopping baskets.

4.3 Evaluation
With our evaluation we reflect the skip-gram architecture that we
used for training our models. Specifically, we calculate a set of k
recommendations for each product in a shopping basket of the
validation set. We then compare the result set, which is ordered by
relevance, against the remaining products in the shopping basket.
We repeat this procedure for every product in the shopping basket,
so that every product is used as a query product once. If there are no
recommendations for a given product (e.g., due to limited support
in the training data) we assign the query a score of 0, regardless of
the used evaluation metric.
Evaluation Metrics. We evaluate each result set using recall at
k (Recallk ), which is defined as the ratio between the number of
relevant products in the result set of recommended products of size
k to the total number of relevant products. Hence, using this metric
we evaluate to what extent the result set contains the relevant
products for a given query product of a shopping basket.

However, Recallk is not affected by the order in which recom-
mendation are reported, which is an important requirement in
real-world recommendation scenarios, as more relevant products
should be reported first [6, 17, 21]. Therefore, we also calculate
normalized discounted cumulative gain at k (NDCGk ) [12], which
is a rank-based metric that penalizes relevant products at lower
ranks in the result set. We calculate the metric using discounted
cumulative gain at k , which is defined as

DCGk = rel1 +
k∑
i=2

reli
log2(i)

, (3)

where reli is the graded relevance of the recommendation at po-
sition i in the result set, which is in our case reli ∈ {0, 1}, as
all products in a shopping basket have the same importance (i.e.,
reli = 1) and all others are not relevant at all (i.e., reli = 0). We then
calculate the normalized discounted cumulative gain by dividing the
DCGk of the result set by the ideal DCGk for the query (i.e., the
result set which contains all relevant products first).
Evaluation Protocol.We evaluate our approach for each experi-
ment by conducting a 10-fold cross-validation on the whole dataset,
using the best model configuration determined via hyperparame-
ter search (see Model Parameters in Section 4). Further, we report
average values for both metrics over our 10-fold cross-validation
iterations.

We calculate a set of k = 20 recommendations for each product
in a shopping basket. We have selected k so that the number of
resulting recommendations are small enough to be displayed, for
example, in the mirror of a smart fitting room. Note that scores for
NDCGk=20 as well as Recallk=20 for shopping baskets larger than
20 products are penalized, as not all potentially relevant products
can be obtained. However, as there is only a very limited number
of such cases (i.e., 18 of 146,720 in the entire dataset) the impact on
the overall results is negligible.

5 RESULTS & DISCUSSION
5.1 Comparison of Baselines
We start by investigating how recommendation performance varies
across cities on the basis of our all-cities prod2vec baseline. We find
that Riverdale and Springfield yield a higher NDCGk=20 of 0.1454
and 0.1387 than Gotham City and Metropolis with scores of 0.1144
and 0.1184. We can also find the same pattern for Recallk=20 with
values of 0.2117 and 0.2032, compared to 0.1781 and 0.1820. In all
other experiments and across all models we observe similar and
consistent differences in performance for individual cities. Thus,
we henceforth only report mean NDCGk=20 and Recallk=20 over
all four cities.

Comparing the performance in NDCGk=20 of the count-based
individual-cities popularity and co-purchase baselines, with the
individual-cities prod2vec models, we see that the embedding-based
approach yields better results. ThemeanNDCGk=20 of the individual-
cities prod2vec models over all four cities is 0.1022, compared to an
NDCGk=20 of 0.0467 and 0.0637 for the popularity and co-purchase
baselines (see Table 2 rows (c), (a) and (b)).

Further, while the all-cities co-purchase and prod2vec models
(i.e., one common model for all cities) are able to outperform their



Table 2: Experimental Results. This table depictsNDCGk=20 and Recallk=20 for all of our performed experiments. The presented
figures are average values over a 10-fold cross-validation, including the standard deviation in brackets. The experiments are
divided into four groups: baselines (a to f), models that leverage point-of-sale information (g), experiments that use the pre-
sented data augmentation strategies (h to k), and experiments that leverage both (l to o). The results indicate that models
which leverage both proposed methods outperform all baselines in terms of NDCGk=20. Nevertheless, the ensemble model of
our approach, combined with the all-cities co-purchase baseline, yields the highest NDCGk=20.

mean NDCGk=20 mean Recallk=20

Baselines

(a) individual-cities popularity baselines 0.046733 (0.001815) 0.089706 (0.002766)
(b) individual-cities co-purchase baselines 0.063677 (0.001351) 0.193848 (0.004514)
(c) individual-cities prod2vec baselines 0.102156 (0.002850) 0.154447 (0.003785)
(d) all-cities popularity baseline 0.043804 (0.001629) 0.085705 (0.002791)
(e) all-cities co-purchase baseline 0.076699 (0.001568) 0.230796 (0.004683)
(f) all-cities prod2vec baseline 0.129225 (0.003455) 0.193732 (0.004691)

Point-of-Sale Extension

(g) all-cities POS-prod2vec model 0.132292 (0.003918) 0.196818 (0.004691)

Data Augmentation

(h) individual-cities pair augmented prod2vec models 0.105980 (0.003265) 0.158479 (0.004311)
(i) all-cities pair and triple augmented prod2vec model 0.128519 (0.003585) 0.186634 (0.004419)
(j) all-cities m-replicated baskets prod2vec model 0.127961 (0.004206) 0.186863 (0.004872)
(k) all-cities pair augmented prod2vec model 0.133380 (0.003631) 0.197160 (0.004449)

Combined Approaches

(l) all-cities pair and triples augmented POS-prod2vec model 0.133274 (0.003477) 0.194069 (0.004403)
(m) all-cities m-replicated POS-prod2vec model 0.133193 (0.003904) 0.194414 (0.004680)
(n) all-cities pair augmented POS-prod2vec model 0.135105 (0.003777) 0.199929 (0.004836)
(o) all-cities pair augmented POS-prod2vec & co-purchase ensemble 0.138177 (0.003603) 0.215207 (0.004947)

individual-cities counterparts, the popularity baseline performs bet-
ter when fitted for each city separately. We can also observe that the
individual-cities prod2vec baseline is able to beat the all-cities popu-
larity and co-purchase baselines with an NDCGk=20 of 0.0438 and
0.0767. At the same time, we find that the individual-cities prod2vec
baselines for each city are on average outperformed by the all-cities
prod2vec baseline, which achieved a mean NDCGk=20 of 0.1292 (cf.
rows (d), (e), and (f) in Table 2).
Findings.We find small, yet consistent, differences in performance
for each city individually. Further, the all-cities prod2vec model is
the overall best performing baseline in terms of NDCGk=20.
Discussion. In our comparison of recommendation performance
across cities we observe small differences. One possible explanation
for this effect could be imbalanced training samples from the differ-
ent cities. However, the best performing city in this experiment is
Riverdale, which has a similar amount of training data available as
Metropolis and Gotham City (see Table 1). Springfield, for which
we collected the most training samples, only achieves the second
best performance in terms of NDCGk=20 and Recallk=20. We hy-
pothesize that the actual differences emerge due to local differences
in the shopping behavior of customers, which cannot be captured
equally well. This assumption is supported by similar NDCGk=20
and Recallk=20 of Metropolis and Gotham City, two cities located

in closer proximity3 that are therefore also culturally closer than
the other ones.

We also see that while all-cities models usually perform better,
the recommendation of popular products can be improved by using
an individual-cities approach. This indicates that the differences in
top-selling products are more prominent across individual cities.

5.2 Point-of-Sale
By leveraging the proposed point-of-sale information for the all-
cities prod2vec model, we can further improve the recommendation
quality by 2.86% compared to best performing baseline (cf. row (f)
and (g) in Table 2). This all-cities POS-prod2vec model achieves a
mean NDCGk=20 of 0.1323 on average over all four cities.

While the point-of-sale information clearly enhances recom-
mendation performance in terms of NDCGk=20 (i.e., more relevant
products are ranked first) we can see that the co-purchase base-
lines yield higher Recallk=20. In particular the all-cities co-purchase
baseline achieves the best Recallk=20 with 0.2308 compared to, for
example, the all-cities POS-prod2vec model with 0.1968.
Findings. By introducing point-of-sale information into shopping
baskets we are able to improve recommendation quality as mea-
sured by NDCGk=20.

3Note that this is not only true in the DC universe, but also in real life.



Discussion. For this experiment we leverage point-of-sale informa-
tion for calculating recommendations. Intuitively, models trained
for each city individually should already capture this information
implicitly. However, all-cities approaches outperform individual-
cities approaches, as we already have shown in the previous Sec-
tion 5.1. We hypothesize that the sparsity of the available training
data, which is a substantial problem for traditional brick-and-mortar
retailers in general, is favoring the all-cities model simply due to
more training data being available.

Moreover, by using an all-cities model, we can potentially com-
pute recommendations for newly introduced products in a city,
if the model has already encountered these products at different
locations (see mean product overlap in Table 1). Hence, we can
improve the quality of recommendations in these location-based
cold start scenarios. Our results, combined with the additional or-
ganizational overhead of maintaining a separate model for each
city, suggest the usage of all-cities models, even for stores located
in different geographic locations. Furthermore, we have shown
that the point-of-sale extension further improves recommendation
performance of all-cities models. Hence, our all-cities POS-prod2vec
approach is able to overcome data sparsity issues to some extent,
while providing a more resilient and location-aware model at the
same time.

Nevertheless, we can also observe the strengths of the count-
based co-purchase models. While these approaches are not able
to rank the results well, they appear to be generally better suited
to find more relevant products. This is clearly highlighted in the
differences in their performance as measured by NDCGk=20 and
Recallk=20 compared to the other models.

5.3 Data Augmentation
First, we report the performance of our data augmentation strategies
that generate new training data by leveraging existing shopping
baskets. Using the all-cities pair augmented prod2vec model we
can improve recommendation performance from NDCGk=20 =
0.1292 toNDCGk=20 = 0.1334 as compared to the all-cities prod2vec
baseline (cf. rows (f) and (k) in Table 2). However, we observe a
decrease in NDCGk=20 of -0.43% and an even higher decrease of
-3.66% in Recallk=20 with the all-cities pair and triple augmented
prod2vec as compared to the same baseline (cf. rows (f) and (i) in
Table 2).

Second, we compare the best approach so far (i.e., all-cities pair
augmented prod2vec) against the shopping basket replication strat-
egy, which reintroduces already existing training examples. We
observe a decrease in NDCGk=20 from 0.1334 to 0.1280 for the all-
cities m-replicated baskets prod2vec model (cf. rows (j) and (k) in
Table 2). Using the all-cities 2m-replicated baskets prod2vec model
we obtain an even lower NDCGk=20 of 0.1263, while the all-cities(m
2
)
-replicated baskets prod2vec approach performs worst with an

NDCGk=20 0.1078. We also observe a similar decrease in Recallk=20
for all three replication strategies.
Findings. The data augmentation approach, which generates addi-
tional training examples by extracting pairs from the initial shop-
ping baskets (i.e., all-cities pair augmented prod2vec), performs bet-
ter than the other augmentation strategies. This approach also
shows a consistent improvement of recommendation performance
as measured with NDCGk=20 compared to our baselines.

Discussion. With the all-cities pair augmented prod2vec model,
we introduce roughly 420,000 additional training samples. Out of
these, around 320,000 pairs are unique, which is a significant in-
crease in the total number when compared to approximately 70,000
unique pairs in our original dataset. The overlap between the initial
and newly generated pairs is approximately 20,000 pairs. Hence,
with our pair augmentation approach we introduce numerous new
training examples, which are originally not present in our dataset.

In contrast to the addition of new training examples in the form
of product pairs, our shopping basket replication strategy reintro-
duces already existing training examples by putting higher weights
on the larger baskets. This leads to a more uniform distribution of
the basket sizes. However, this approach fails to improve recommen-
dations, as NDCGk=20 and Recallk=20 both decrease with higher
degrees of replication. Thus, simply repeating training samples
does not increase the model performance. We hypothesize that the
repetition of less-frequent large shopping baskets does not reflect
real-word characteristics very well and introduces noise during the
training of our model.

On the other hand, our best performing pair-based strategy is
not simply introducing existing shopping baskets multiple times
but generates new contexts based on existing ones. Hence, new
contexts seem to be more important than replication of the existing
ones. Nevertheless, adding product pairs in combinationwith triples
from shopping baskets leads to a decrease inNDCGk=20, despite the
introduction of additional and more extensive contexts. A potential
explanation for this complex non-linear phenomenon is that by
introducing product triples we potentially introduce noise as well
or skew the actual relations between products.

We confirm this hypothesis by another experiment where we
exclusively add product triples whenever possible. In this case we
achieve an NDCGk=20 of 0.1256, which constitutes a performance
decline of -5.84% compared to the all-cities pair augmented prod2vec
model. Note that when adding only triples, we generate 600,000
new shopping baskets (590,000 unique ones). Compared to the
initial 30,000 shopping baskets of size three in our dataset (of which
the majority is unique), we observe a small overlap of about 2,000
baskets. Hence, we hypothesize that the introduction of such large
amounts of triples does not reflect the characteristics of the original
dataset, resulting in empirical shopping basket training samples
(opposed to newly generated ones) losing their discriminative and
predictive power.

Next, we verify the performance improvement of the pair data
augmentation strategy in individual-cities models. To that end, we
train individual-cities pair augmented prod2vec models for each city
individually. We observe an improvement in recommendation per-
formance in terms of average NDCGk=20 over all cities by 3.74%
for the individual-cities pair augmented prod2vec model compared
to the individual-cities prod2vec baseline. We observe a similar per-
formance gain in Recallk=20 as well (see Table 2 row (h) and (c)).

Finally, we analyze if we can achieve a similar performance im-
provement by adding product pairs to our count-based approaches.
In our additional experiments we observe that adding new pairs to
the count-based baselines does not have a positive effect on their
performance. For example, with pair-based data augmentation for
the all-cities co-purchase baseline we observe a slight decrease in
performance in terms of NDCGk=20 by -1.9%. Following this result,



we conclude that the augmentation of the dataset using product
pairs for training enables the prod2vec algorithm to capture par-
ticular latent pairwise relationships between products, which in
turn seem to play an important role in the calculation of accurate
product recommendations. Note that this is also reflected in the fact
that the all-cities prod2vec model with no augmentation performs
better than all discussed alternative augmentation strategies except
pair-wise augmentation.

5.4 Combined Approach
Now we report the results of our combined approaches in which
we join our point-of-sale and data augmentation strategies. In par-
ticular, compared to the all-cities prod2vec model we can see an
improvement of a all-cities pair augmented POS-prod2vec model in
terms of NDCGk=20 from 0.1292 to 0.1351. We can also observe
a similar improvement in Recallk=20 (see Table 2 row (f) and (n)).
By using additionally generated pairs as well as triples we achieve
an NDCGk=20 of 0.1333. If we use instances of the extended shop-
ping baskets multiple times for training (i.e,. m-times, 2m-times
and

(m
2
)
-times), performance does not improve, which is evident in

decreasing NDCGk=20 (0.1332, 0.1324, and 0.1148).
Finally, we report the performance of a all-cities ensemble model,

which consists of the best performingmodels in terms ofNDCGk=20
(i.e., all-cities pair augmented POS-prod2vec) and Recallk=20 (i.e., all-
cities co-purchase). We calculate recommendations for the ensemble
by appending the fourteen highest co-purchases of a product to
the first six recommendations of our all-cities pair augmented POS-
prod2vec model. We determined the 6/14 split by performing a grid
search over all possible value pairs that sum up to k = 20. Us-
ing this configuration we can see a performance improvement in
NDCGk=20 of 6.9% compared to the all-cities prod2vec model (cf.
Table 2 row (n) and (o)). This constitutes the overall best performing
approach in our work.
Findings.We show that the proposed data augmentation in combi-
nationwith point-of-sale information can improve recommendation
quality, especially by leveraging co-purchase information as well.
Discussion. Similar to the data augmentation for initial shop-
ping baskets, the pair-based approach works best for location-
extended shopping baskets as well. Hence, by introducing explicit
city-product pairs to the training data, we are able to improve the
quality of the recommendations even further by making use of the
latent interactions between a given city and the products that were
sold in that particular city. In this way, we obtain recommendations
that are better tailored to stores in individual cities.

While the co-purchase baseline ranks the recommendationsworse
than embedding-based models as evident in lower NDCGk=20, it
achieves a higher Recallk=20. We exploit this fact by constructing
an ensemble configuration of our best performing all-cities pair
augmented POS-prod2vec model and the all-cities co-purchase base-
line. Here, our intuition is to use the well-ranked results from the
embedding-based approach and combine them with relevant prod-
ucts supplied by the co-purchase baseline. Thereby, we effectively
eliminate irrelevant products of the all-cities pair augmented POS-
prod2vec model, and further improve recommendation results in
terms of NDCGk=20. While we obtain better results also in terms
of Recallk=20, we are still not able to outperform the all-cities co-
purchase model.

Nevertheless, we show that point-of-sale information and data
augmentation are both (i) suitable to tackle their individually out-
lined challenges, and are (ii) compatible with each other allowing
for a unified recommendation framework, which addresses locality
effects as well as limited data availability.

6 CONCLUSION & FUTUREWORK
In this paper we presented a recommendation framework which
can be applied in the stores of traditional brick-and-mortar retailers.
This setting is characterized by limited available and sparse data, for
example due to small and fast changing assortments and varying
buying behavior of customers across locations.

We based our work on the already established prod2vec model,
which only relies on the co-occurrence of products in shopping
baskets and not on additional data, such as customer profiles or
product properties (e.g., textual descriptions or pictures). More-
over, we showed that our novel data augmentation approach is
able to tackle the problem of data sparsity by generating additional
shopping baskets based on already existing empirical data. We also
presented a point-of-sale extension, which enhances the shopping
baskets with additional location-related information. By combining
these methods we provided a resilient and accurate recommenda-
tion approach that outperforms individual models for each city.
Further, we made another improvement by extending our com-
bined recommender with the benefits of a count-based co-purchase
approach in the form of an ensemble recommender.

So far we only applied our approach on a single real-world fash-
ion retail dataset. However, we are also interested in experimenting
with different datasets, settings, and domains. In particular, we
believe that when considering different features of retailers (e.g.,
department stores vs. specialty retailers) in our training data, we
can further improve recommendation performance. Additionally,
our presented approaches we were not able to match recall of our
co-purchase baseline. To this end, we plan to explore different en-
semble strategies to achieve both a highNDCGk and a high Recallk .
Additional metadata information (e.g., size, layout, or turnover of
stores) could potentially also enhance recommendations and we
plan to extend our approach to include suchmetadata in the training
process for our models.

Other ideas for future work include additional investigation of
the importance of product pairs for recommender systems training,
the inclusion of methods to reduce cold-start issues for novel prod-
ucts in the discussed retail setting (i.e., fallback strategies for new
data) as well as a detailed investigation of the observed performance
variations across cities.

We strongly believe that the approach and dataset4 presented in
this paper will improve research in recommender systems suited
for traditional retailers, especially due to the progression and adap-
tion of new technologies, such as smart fitting rooms or chat bots.
Nevertheless, the presented approach could also be adopted in
e-commerce settings, as operators of such websites often serve
different markets. Recommendations for visitors of these websites
could be tailored towards their distinctive demands and buying
behavior as well using our proposed methods.

4https://github.com/detegoDS/shopping_basket_dataset

https://github.com/detegoDS/shopping_basket_dataset
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