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Abstract—Over the course of recent years, Internet of Things
(IoT) technology, and in particular Radio Frequency Identi-
fication (RFID), has seen widespread adoption across several
different domains. Particularly the fashion industry has inte-
grated RFID into their day-to-day business for accurate stock
tracking and monitoring. While inventory accuracy can be
increased well above 90%, perfect inventory accuracy is hard
to achieve, which is often related to the inherent problems
of RFID technology. Several factors can favor or adversely
affect RFID reader performance, such as the materials items
are made of, their placement in the store, or the location of
where the RFID tag has been attached. Therefore, identifying
such products, that are frequently missed during stocktakes, is
crucial to reach fully accurate inventories, as they require special
attention to be properly processed. In this paper, we set out to
tackle this real-world problem of determining products with low
detectability, based on historical stocktake data of more than 400
brick-and-mortar stores. Further, we conduct a controlled user
study to evaluate and improve the detectability of frequently
missed products for a total of 16 stores. Our results indicate
that frequently missed products can be identified and used as a
foundation to further improve stock accuracy in retail stores.

Index Terms—RFID, item detectability, inventory accuracy

I. INTRODUCTION

Studies have shown that the stock accuracy of retail-
ers which use traditional stock-keeping methods is roughly
50% [1], [2], meaning that large portions of the inventory
are often unaccounted for. This does not only constitute
potential financial issues for a company due to unexplained
or missing assets (e.g., phantom inventory [2]), but also
prevents the adoption of state-of-the-art retail technologies,
such as automatic stock management systems or smart fitting
rooms and other omni-channel capabilities [3]. Therefore, new
technologies such as Radio Frequency Identification (RFID)
have been widely adopted in a variety of different real-world
applications [4], [5], [6], [7] to accurately track and identify
goods without a direct line-of-sight.

Problem. However, while RFID technologies are known to
boost the stock accuracy of retailers well beyond 90%, they
still highly depend on the readability of items, which can be
influenced by various factors. Hence, while RFID technology
can improve the stock accuracy of retailers by a large margin,
the readability (i.e., detectability) of items during stocktakes
becomes the limiting factor for achieving fully accurate in-
ventories. Specifically, the location where items are placed in
the store, such as metal shelves or surfaces, which can reflect
radio waves, render items on them more difficult to detect [8].
Other adverse factors, inherent to the items themselves, include
the materials they are made of (e.g., metallic fibers) or where
RFID tags are attached (e.g., the sole of shoes or close to
metal embellishments) [9].

Particularly fashion retailers are often confronted with prod-
ucts exhibiting such unfavorable characteristics. Therefore,
fashion store staff must pay close attention during stocktakes
to achieve a high stock accuracy. Nevertheless, identifying
which products exhibit this hard-to-read characteristic might
not be obvious in the first place. Even experienced staff, which
uses RFID technology on a daily basis, may not be familiar
with several of the root causes for limited detectability of
individual products. Therefore, identifying such products to
improve stock accuracy of stores represents a major challenge.
Approach. To improve stock accuracy and mitigate the inher-
ent problems of RFID technology in real-world, retail environ-
ments we set out to identify products with limited detectability
(i.e., frequently missed products) using a data-driven approach.
To that end, we use the extended information available through
IoT-based data streams generated by store staff when con-
ducting stocktakes. Specifically, we leverage historic stocktake
data from 407 brick-and-mortar fashion stores owned by a
large premium clothing manufacturer, located across the US,
Europe, and Asia, to compute the detection probability of a
given product based on whether or not items were read during
consecutive stocktakes. Furthermore, we use this obtained
information about the detectability of individual products to123-1-1234-1234-1/19/$42.00 ©2019



assist store staff during future stocktakes. We do this within
the scope of a controlled case study, in which we send out
a weekly e-mail report to a selected group of stores, which
contains their respective frequently missed products.
Findings & Contributions. In this paper, we first demonstrate
how to leverage IoT data streams to identify and distinguish
frequently missed products. Second, we show that such prod-
ucts often vary across different regions and even stores, which
we leverage to provide more targeted guidance for stores when
dealing with such products. Furthermore, we present results of
an on-going study where we inform staff of 16 stores about
their frequently missed products by e-mail. Specifically, we
outline first results related to this endeavor as well as emerging
challenges associated with the real-world retail environment,
providing insights into how to implement such an IoT-based
information system. Finally, we publish our large-scale, real-
world dataset1, which contains stocktake data of more than 400
stores over several months. We strongly believe that the results
and methods we present in this paper represent an important
stepping stone towards more robust RFID-based solutions for
retailers.

II. RELATED WORK

In the past, Mühlmann and Witschnig [10] studied the
detection probabilities of passive RFID tags in a real-world en-
vironment (i.e., pallets stacked with groceries passing through
an RFID tunnel in a distribution center) and proposed guide-
lines to minimize missed reads. However, more focus is
put on improving detectability on lower system levels. For
example, Luo et al. [11] design in their work a tag-reader
communication protocol to enhance the detection probability
of RFID tags in real-world environments. Yu et al. [12] expand
on this by also taking unexpected tags into account, which are
an additional problem in real-world settings as they reduce
the efficiency of the protocol. In contrast, in our work we do
not focus on the protocol-level of RFID systems, but instead
use the high-level reads of items to determine their overall
detectability. Furthermore, our approach focuses on retail store
environments, where mobile readers are typically used instead
of static antennas.

Jeffery et al. [13] counteract the unreliability of RFID tag
read streams by applying an adaptive smoothing approach,
which reduces read errors drastically. Similar methods have
been proposed, for example, to track objects [14] or to mini-
mize the influence of cross-reads (i.e., detection of unrelated
tags due to signal reflections) [15]. Tu and Piramuthu [16],
[17] propose in their work a framework to reduce erroneous
RFID read-events in general (e.g., false positive reads which
can be interpreted as noise). Their approaches are mainly
based on additional hardware (i.e., RFID reader and tags)
and majority voting models as well as heuristics, which they
recently applied in the area of pervasive healthcare [18]. In
contrast, we are not able to leverage additional hardware

1https://github.com/detegoDS/stocktake reads dataset

as stocktakes in retail stores are generally performed using
mobile handheld devices.

Gonzalez et al. [19] discuss in their work the challenges
related to the massive amount of information generated by
items moving along the RFID-based supply chains. These
include efficient ways of storing and processing this informa-
tion, so that inferring meaningful insights based on the data
becomes feasible. To do this, they propose a data warehousing
model, which builds compacted hierarchical representation
of the data (i.e., RFID-Cuboids). They extend this concept
further by introducing flow information of items as well, for
example, to discover trends in item movements [20]. Similarly,
Masciari [21] proposes in his work a general framework to
mine vast data streams generated by RFID-based systems and
detect outliers in this stream of read-events. However, these
frameworks focus on the tracking of items over vast supply
chains, while we only focus on the reads of items in individual
stores, which allows us to infer detection probabilities more
efficiently. Nevertheless, the information retrieved from RFID-
based data streams provides the foundation for the adoption of
novel technologies in traditional retailing, such as product rec-
ommendations in smart fitting rooms [22] or the localization
of missing items [23].

III. MATERIALS & METHODS

A. Preliminaries

In this paper, we use fashion-retail-specific terminology
to discern between different generalization levels of fashion
goods.
Item. Every single physical item in the stock of the retail
stores in our dataset is tagged with an RFID tag. Whenever
a tag is read, it reports its uniquely identifiable Electronic
Product Code (EPC) to the RFID reader. For example, if a
retailer manufactures 20,000 units of a specific T-shirt design,
each of these items is assigned an EPC, allowing us to uniquely
identify it.
Product. Further, each item is associated with a unique prod-
uct. Hence, a product refers to a set of items that share certain
properties (i.e., the design). Given our previous example, the
retailer would refer to all 20,000 items as the same product.

B. Detecting Frequently Missed Products

Using RFID technology, we can track individual items over
their entire lifecycle in a store. For every stocktake, we have a
record of which EPCs were read (i.e., hit) during the process
(see Figure 1a for a schematic illustration of a stocktake).
However, we are not able to easily detect missing EPCs (i.e.,
miss), as inventory information is only provided on a product-
quantity level and not for individual items. Hence, we can
only deduce if an EPC was really missing only when we read
the corresponding item at least once more after it was already
missing in a stocktake.

Specifically, for the analyses presented in this paper, we
leverage stocktake data of individual stores to deduce a

https://github.com/detegoDS/stocktake_reads_dataset
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Fig. 1: Estimating Detection Probabilities Based on Stocktakes. We determine the detection probabilities of products based
on data we collect during stocktakes. Figure (a) shows a schematic depiction of store staff performing a stocktake on the
salesfloor using mobile RFID readers. During stocktakes individual items, which are identified by their unique EPC, are
recorded. This allows us to derive a sequence of hits and misses of individual items across multiple stocktakes. Based on this
sequence we calculate a detection probability by comparing the number of hits and misses between the first and last hit (i.e.,
we ignore trailing misses). Figure (b) shows this for an exemplary item. Finally, we aggregate the detection probabilities of
individual items to derive the detectability of the corresponding products.

sequence of hits and misses ae = (he,1, he,2, . . .) for each
individual EPC e, where

he,i =

{
1, if e was read during a stocktake i
0, otherwise.

(1)

Based on the detection sequence he of an EPC e, the detec-
tion probability qe for the corresponding item is determined
by

qe =

∑
i he,i
|ae|

, (2)

whereas |·| denotes the length of the sequence between the
first and the last read. Hence, trailing misses (e.g., due to the
sale of the item) do not contribute to the calculation of the
detection probability (cf. Figure 1b for an example).

These detection probabilities of individual items already
provide valuable, but limited information, due to the unre-
liability of RFID read signals. For example, a single RFID
tag could be damaged or unintentionally shielded (e.g., due to
surrounding metallic surfaces), which would result in a very
low detection probability not necessarily reflecting the general
detectability of the corresponding product.
Global Detection Probabilities. Therefore, we aggregate the
detection probabilities of tagged items of the same product
to reduce the impact of single (malfunctioning) tags and to
obtain more representative detection probabilities. Specifically,
we aggregate the detection probabilities of physical items
across all stores belonging to the same product by calculating
their mean detection probability. As these probabilities are
deduced from all available EPCs we denote them as global
detection probabilities. More formally, we calculate a global
detection probability pp for a product p by compiling detection
sequences from all stores:

pp =

∑
e∈Ep

qe

|Ep|
, (3)

whereas Ep denotes the set of EPCs corresponding to the
product p. Note that we discard all detection probabilities

which are compiled from less than 10 EPCs to provide
sufficient support and to reduce noise in the data whenever
new products are introduced or old ones are phased out (e.g.,
due to seasonal changes in product assortments).
Store-specific Detection Probabilities. As location specific
factors, such as metallic surfaces, liquids or other radio-
frequency reflecting objects, can influence the detectability of
RFID tags, we are also interested in calculating store-specific
frequently missed products to determine if we can identify
a core group of products with limited detectability across all
stores. For example, if several stores struggle with reading the
same product, we might be interested in investigating the prop-
erties which negatively impact the detectability of the product
in general. On the other hand, a high store-specific detection
probability deviation from the global detection probability for
a product would indicate that problems with this product are
most certainly exclusive to the store. Such a situation can arise,
for example, when a T-shirt is placed on hangers in all but one
store, where it is stacked on a metal shelf.

Hence, we calculate a store-specific detection probability,
by adapting the set of EPCs associated with a product to only
include EPCs physically present in store s. We calculate the
store-specific detection probability for a product pp(s) by

pp(s) =

∑
e∈Ep,s

qe

|Ep,s|
, (4)

where Ep,s is the set of EPCs corresponding to the product
p and located in store s. Note that we apply the same filter-
ing approach as discussed for global detection probabilities.
However, we set the minimum required number of EPCs to
3, as the overall number of items in a store is limited, yet we
only want to include detection probabilities for products that
are available multiple times to mitigate outliers.
Item Expiration. We calculate the global and store-specific
detection probabilities on a weekly basis. Moreover, as we
are not able to determine the exact point in time when
an item was sold, we discard the hit and miss sequences



Footwear Accessories Tops Bottoms
Product Category

0.0

0.2

0.4

0.6
Re

la
tiv

e 
Fr

eq
ue

nc
y

0.005
0.061

0.34

0.594
Inventory Sturcture by Category

Fig. 2: Inventory Structure. We depict the relative number of
products by category in our data set. The majority (well over
90%) of products are clothing, while only a small fraction can
be attributed to accessories and footwear.

with more than 14 trailing misses. Therefore, an item can
only influence the detection probability of the corresponding
product for two additional weeks after it was sold. This limits
the influence of items which are not present in the store
anymore, representing a mechanism that allows us to “forget”
about products (e.g., when they are lost, stolen or phased-out
due to season changes).

C. Dataset

For our analyses we leverage stocktake data of 407 stores
from an international premium clothing retail chain with
stores located in the US, Europe, and Asia. We investigate
stocktakes between January 7, 2019 and April 18, 2019. For
each stocktake we collect the start and end timestamp, the
store in which the stocktake took place, as well as the unique
identifier (i.e., the EPC) of every physical item that was read
during a stocktake. Furthermore, we store the expected number
of products by the stock management system as well as the
observed product quantities for any stocktake in the respective
store. This allows us to calculate accuracy of a stocktake (i.e.,
how well the expected stock matched the observed one) using

α =

(
1− # unexpected + # missing

# target

)
× 100%. (5)

During this four and a half month period all stores combined
completed 32,256 stocktakes in which they processed more
than half a billion items (564,022,373, representing roughly
12,000,000 products). From those EPCs, we were able to
extract a total of 8,728 unique products, which highlight the
heterogeneous product structure, which we further categorize
(see Figure 2) into tops (e.g., T-shirts), bottoms (e.g., jeans),
accessories (e.g., wallets, belts), and footwear (e.g., sneakers).

Furthermore, the stocktake accuracy is overall high across
all stocktakes with a mean of over 92% and a standard
deviation of 9.4%. The median stocktake duration is just over
half an hour, which further highlights the utility of RFID-based
stock management.
Regional Differences. Aside from the different numbers of
stores per region, we can see that store activity—in terms
of conducted stocktakes per week—differs for each region
as well, which we attribute to the number of business days

per week (cf. number of stocktakes in Table I). While stores
in Europe perform stocktakes only five times a week due to
limited opening hours, stores in the US and Asia are, for
the most part, open every day of the week and perform, on
average, one stocktake per business day.
Stock Size vs. Stock Accuracy. Moreover, we can see that
stores in Asia, with the smallest stock sizes, exhibit the highest
mean stock accuracy, but also only carry one fifth of the assort-
ment of a typical store in the US. In general, we would assume
that smaller inventories make it easier for stores to achieve
higher stock accuracies, as there are fewer opportunities to
miss products during a stocktake. However, stores in Europe
exhibit an average inventory size of roughly 8,500 items while
achieving a lower average stock accuracy than stores in the US,
with an average stock size of 22,808 items (cf. Table I). Hence,
the differences in stock accuracy might have more complex
causes than stock size, such as a higher influence of frequently
missed products during stocktakes in Europe compared to the
other two regions.
Stock Variety & Tagged Stock. When looking at the variety
of the assortments between the three regions (i.e., how many
different products are offered) we find that there are 1,062
unique products in stores in Asia, compared to 4,054 and 5,509
unique products in stores in Europe and the US. Further, the
overlap of products between regions, which we calculate using
Jaccard similarity coefficient (i.e., intersection over union of
product sets), is very small with a similarity coefficient of 0.18
between the US and Europe, 0.10 between Asia and Europe
and 0.068 between Asia and the US. Overall, we obtain a
Jaccard similarity of 0.034 between the product assortments
of all three regions. In turn, this means that we will only be
able to identify frequently missed products for each region
rather than on a global scale, due to the limited overlap in
products between regions.

Finally, it is also worth mentioning that the product cate-
gories which are tagged in each region differ as well. While
European stores have their entire inventory RFID-tagged (i.e.,
all four categories; see Figure 2), Asian stores do not carry
tagged footwear, and stores in the US only carry RFID-tagged
apparel (i.e., tops and bottoms).

TABLE I: Dataset Characteristics by Region. First, we list
the number of stores located in a region (# stores) and the cor-
responding percentage, as well as the number of the performed
stocktakes for each region overall, and on average per week
(# stocktakes). Further, we state the mean stocktake accuracy
across regions, which indicates how well the expected stock
did match with the actually recorded one, and the mean stock
size.

# stores # stocktakes stocktake acc. stock size

USA 196 (48.16%) 19,541 (6.4) 92.45% 22,808
Europe 199 (48.89%) 11,465 (5.2) 92.30% 8,492
Asia 12 (2.950%) 1,250 (7.3) 94.44% 4,340

Overall 407 (100.0%) 32,256 92.47% 17,004



Fig. 3: Example E-mail. For our user study we send e-mails
to inform store staff about their frequently missed products.

D. User Study

We conduct a user study, for which we selected 16 stores
located across Europe, which will receive information about
their frequently missed products. The primary goal of this
study is to improve detection scores of these frequently missed
products, and therefore also stock accuracy in the long-run. For
this purpose we generate a weekly e-mail report that is sent to
store managers, which contains the ten most frequently missed
products, as well as a short motivational text and instructions
on how to handle such products (see Figure 3 for an example).
Store managers are instructed to forward the information about
frequently missed products to store staff.

The products within the e-mail are presented as unordered
list, where each entry consists of the product name, the product
number, and—if available—a product picture. If there is no
picture available for a product we use a placeholder image as
fallback. Furthermore, we highlight new products (i.e., added
since last week) and if the detection probability of a product
improved compared to previous week. Note that we do not
display the actual detection probability in our e-mails.

IV. RESULTS & DISCUSSION

A. Identifying Frequently Missed Products

First, we examine the readability of products (i.e., calculate
detection probabilities pp) to explore whether or not there

exists a subset of products which are frequently missed during
stocktakes.
Results. The mean global detection probability across all
products is 0.971, with a standard deviation of 0.048, which
indicates that, in general, products can be detected with high
accuracy (see Figure 4a). This is also corroborated by the
median detection probability, which is 0.98 and the overall
high stock accuracy of over 92%.

While most of the products are read well in general, we
can see several frequently missed ones as well. For example,
there are 370 products with a global detection probability of
less than 0.9, which means that these products are missed
at least once every 10 stocktakes on average. Further, there
are 13 products with a detection probability smaller than 0.6,
meaning that the chance for reading such a product during a
stocktake is marginally better than a coin flip. A total of 12
out of these 13 products belong to the tops category.

A breakdown of the global detection probability by product
category (i.e., tops, bottoms, accessories, and footwear) shows
that there are general dissimilarities in the readability of
products with respect to their category. Tops, such as T-
shirts or sweatshirts, are overall more problematic to read
with a mean global detection probability of 0.964, compared
to 0.975 for accessories, and 0.978 for footwear and 0.981
for bottoms. This is also reflected in the larger detection
probability standard deviation of 0.06 for tops, which is up
to three times larger than all other categories (i.e., 0.017 for
footwear, 0.026 for accessories, and 0.036 for bottoms). We
verify the significance (p < 0.0001/6) between the differences
of detection probability distributions between all 6 pairs of
product categories using the Mann-Whitney-U-test and Bon-
ferroni correction [24]. Solely the difference between detection
probabilities of bottoms and footwear is not significant.

When looking at the breakdown of the 500 worst global
detection probabilities by category (see Figure 4b), we can
see that more than half of these problematic products (i.e., 322
of 500) belong to the tops category, which is consistent with
the global detection probabilities. Compared to the inventory
structure (see Figure 2), the fraction of footwear and acces-
sories in the 500 smallest probabilities roughly corresponds to
their share in the overall inventory composition. On the other
hand, tops are over-represented in the smallest 500 detection
probabilities, where they make up two thirds of all products,
while only having a share of one third in the typical inventory
structure.
Discussion. Our approach to determine the detectability of
a product is designed in a very intuitive way. We are able
to capture the inherent problems of the underlying RFID
technology very well, as most of the items exhibit very high
detection probabilities, resulting in a high stock accuracy while
we also identify products that are frequently missed. This is
further corroborated by the long tail of the detection proba-
bility distribution (see Figure 4) strengthening our assumption
that frequently missed products exist.

Furthermore, we observe deviations in the detectability of
products with respect to their product category. Specifically,
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Fig. 4: Global Detection Probabilities. In Figure (a) we depict the empirical global detection probability distribution. We
see generally high detection probabilities, however, there exists a group of products which are frequently missed (see inset).
Additionally, we show the breakdown of the lowest 500 global detection probabilities by product category in Figure 4b, which
shows that tops are the category with the most frequently missed products.

products from the category tops exhibit lower mean detec-
tion probabilities than the other categories (i.e., accessories,
bottoms, and footwear). One explanation for this observation
could be that products in the category of tops (e.g., T-shirts)
require less space compared to products in other categories,
which allows store staff to place large quantities of these items
in dense (and space-saving) stacks on the salesfloor. Such
environments can be problematic for RFID readers as tags
can influence each other (e.g., when they overlap or are put in
very close proximity) and—depending on the material of the
shelves or bins—read signals may be reflected or distorted so
that not all tags are picked up by the reader.

On the other hand, footwear takes up more space than
shirts, as they are usually stored in shoeboxes, which provides
enough separation between the tags to detect them with higher
accuracy. This is also supported in the composition of the
500 products with the lowest detection probabilities, where
tops, for example, are over-represented while bottoms are well
under-represented compared to the typical inventory of the
stores.

B. Analyzing Frequently Missed Products

Next, we compare the global detection probabilities with
each available store-specific detection probability of a product
to identify stores with highly deviating detection probabilites.
If no store-specific probability is available, for example due
to insufficient support or if the product is not part of the
product assortment of a store, we ignore it for this analysis. We
state differences between both types of probabilities as signed
number, where a negative/positive sign indicates that the store-
specific detection probability is below/above the global one
Results. In general, we can observe that the two metrics are
very close, indicating that the reading performance across
stores is rather homogeneous. The average difference between
the global and store-specific detection probabilities is 0.0041
with a standard deviation of 0.036. We see that the number
of positive outliers (i.e., store-specific probabilities which are
5% better than their global counterparts) is smaller (8,994
instances) than the number of negative outliers (15,945 in-
stances). Moreover, negative outliers reach larger probability
differences than positive ones, which is evident in the tails of

the distribution. Nevertheless, the bulk of differences (93%)
lies within the range of ±5%.

Finally, we aggregate the set of top 20 frequently missed
products in each store within a region and calculate how often
a product appears in this set, which allows us to infer products
that are consistently missed during stocktakes in many stores
of a region. We find a total of 18 of such products, which
appear in at least 10% of the 199 US stores and 23 products
for European stores. One of these products even appears in
the top 20 frequently missed product set of 161 out of 199
US stores.
Discussion. In general, we observe that there are distinct
products in each category which are frequently missed across
large fractions of stores in a region. For example, for US stores
we find a button-up shirt for women which has an unusual
material composition with 1% metallic fiber, which makes this
shirt especially difficult to read during RFID-based stocktakes.
This individual product is frequently missed in 80% of all
stores that carry it. We find a similar example for European
stores as well, where a T-shirt for women is frequently missed
in more than 65% of stores. While this particular T-shirt is
made of 100% cotton, it does have metallic embellishments
on it (i.e., sequins) which also leads to RFID reading issues.

Hence, we are not only able to successfully identify core
groups of products, which are often missed during stocktakes
in certain regions, but also verify that the detection of such
problematic products is feasible based on actual read-events.
This is particularly useful as we are not able to solely
rely on the (official) material composition of items to detect
such products (e.g., the T-shirt with metallic sequins), as the
detectability may depend on other features such as ornaments
and embellishments.

C. Reporting Frequently Missed Products

Finally, we are interested in reducing the impact of fre-
quently missed products and therefore—in the long run—
improve stock accuracy of stores by informing store staff
about such products. To do this, we are currently conducting
a user study with 16 European stores, in which we inform
store staff about their most frequently missed products of the
previous week via weekly e-mail reports (see Figure 3 for
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an example). Note that we are mainly interested in changes of
detection probabilities over time, rather than changes in overall
stock accuracy, as improvements due to the limited number of
products stated in our e-mail reports would contribute only a
small fraction to the overall stocktake accuracy.
Results. The results presented in this paper are based on a
total of 15 e-mails, which are sent to each store (i.e., 15
weeks), where store managers are instructed to forward the
provided information to the staff. Over the course of this time
we reported a total of 630 products over all stores, of which
374 are unique. The number of unique products which we
included in our e-mails to individual stores is on average 39.4,
with a standard deviation of 6.1.

We determine if a product improved over time by first
splitting the time series of detection probabilities in two parts.
The first part includes all detection probabilities before the
first time the product was included in a weekly e-mail report
for a store, and the second part detection probabilities after
the inclusion in the e-mail reports. Note that the part of the
timeseries before the e-mail contains all detection probabilities
of the product since its market launch (or since mid-June
2018, if the product was launched earlier), and the second
part until mid-April 2019 (or the point in time the product
was discontinued). Next, we fit a linear function on both parts
of the time series and compare the slope of the functions with
each other. We count an improvement in the slope as a general
improvement of the product in a specific store (cf. Figure 6 for
examples). Out of 630 products which were included in e-mail
reports we find that detection probability improves for a total
of 445 (70.6%). If we require a positive slope for the function
fitted on the second part of the timeseries (i.e., after the e-mail
was sent) we see improvement for 325 (51.6%) products.
Discussion. One of the main requirements for our user study
is that store staff is actually informed about products that are
frequently missed during stocktakes in their respective stores.
Early feedback from store managers indicates that store staff
has limited time to process and memorize the list of badly
detectable products during busy weeks (e.g., first week in
January where customers return holiday presents). Moreover,

we also received feedback, stating that our e-mail report, in
addition to other reports (e.g., stocktake summaries), often
overwhelms employees. This may lead to memory effects,
were store staff is aware of frequently missed products only
for a short period of time, resulting in no more than a
temporary stop in the decline of the detectability of products
(see Figure 6b for an example).

This raises the question if a weekly e-mail report is the
most efficient way for transporting our insights to store staff.
Therefore, we are currently also experimenting with different
ways to provide this information directly to staff while con-
ducting stocktakes. For example, guiding store staff during
the stocktake using the mobile handheld device in the form of
visual or haptic clues could be one way of doing this.

Nevertheless, we are able to observe improvement in the
detection probability of more than 50% of the products men-
tioned in our e-mails. However, the detectability of other prod-
ucts (e.g., the T-shirt with the metallic embellishments) did
not improve from our reports, which indicates that additional
measures, such as changing where the RFID tag is attached
to the item, should be taken into account as well.

V. CONCLUSION & FUTURE WORK

In this paper we presented an empirical analysis of the de-
tectability of RFID-tagged clothing, accessories, and footwear
solely based on RFID data streams of stocktakes. By leverag-
ing this information we were able to successfully identify and
detect products which are frequently missed during stocktakes,
and find core-groups of products with these characteristics
within each region and individual stores. In a controlled user-
study, we use these detection probabilities to inform store
staff about their frequently missed products via e-mail. While
this field trial of our proposed method already shows positive
results, it also raises some challenges such as finding the best
way of relaying the inferred detection probabilities.

Therefore, for future work we plan on further looking into
detection probabilities to provide real-time feedback on RFID
handheld devices (e.g., by visual or haptic clues) already
during stocktakes. The main idea behind this approach is that
similar products are usually placed in close proximity to each
other on the salesfloor. Hence, whenever the handheld reads
an EPC that is associated with a frequently missed product,
we can assume that more of these items are close-by, and
therefore alert staff that they should spend more time reading
RFID tags of products in this section of the store.

An additional application for detection probabilities based
on RFID data streams we want to implement is the automated
adjustment of the stock of a store if a product is missing during
stocktakes (e.g., writing it off, as it might have been lost or
stolen). For example, if a product exhibits a low detectability,
the number of stocktakes where the product was missing
before it is written-off can be automatically adjusted. However,
if a product exhibits a high detectability, we can automatically
configure the write-off process to get triggered sooner than for
frequently missed products.
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(c) Example 3

Fig. 6: Detection Probabilities Development. In this Figure we highlight the change in the detection probabilities for three
exemplary products over time. The red vertical lines indicate the points in time when a product was part of the weekly e-mail
report for the first time. This line also divides the timeseries in two parts, for which we each fit a linear function (black lines).
Figure (a) depicts a positive example, were we can see an improvement in detection probability after the e-mail was sent.
However, Figures (b) and (c) show that the e-mail report can also only temporarily delay the decrease in detection probability
or show no effect at all.

Furthermore, we plan to investigate different approaches for
the calculation of the detectability of products. In context of
this work, the detection probability is determined by the ratio
between the number an EPC was read and the total number
of stocktakes an EPC was expected, which is in essence, the
probability that an item will be detected during a stocktake.
However, the detectability measure of an item could also be
defined by the occurrence of certain patterns in the observation
sequences. For example, frequent occurrences of EPCs missing
between two stocktakes (i.e., patterns such as [hit,miss, hit])
may describe items which are frequently missed more accu-
rately. To determine if and which sequences are most suitable
for the calculation for the detection probability A/B tests could
be performed, where stores with similar problematic items
could receive feedback based on different detectability metrics.

We strongly believe that the approach presented in this
work represents an important stepping stone towards further
improving stock accuracy of RFID-equipped retail stores close
to 100%. Further, the dataset2 we collected consisting of real-
world read-event data from more than 400 stores located
in three different regions across the world will allow other
researchers to extend their methods as well.
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