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ABSTRACT
Ontologies in the biomedical domain are numerous, highly
specialized and very expensive to develop. Thus, a cru-
cial prerequisite for ontology adoption and reuse is effective
support for exploring and finding existing ontologies. To-
wards that goal, the National Center for Biomedical Ontol-
ogy (NCBO) has developed BioPortal—an online repository
containing more than 500 biomedical ontologies. In 2016,
BioPortal represents one of the largest portals for explo-
ration of semantic biomedical vocabularies and terminolo-
gies, which is used by many researchers and practitioners.
While usage of this portal is high, we know very little about
how exactly users search and explore ontologies and what
kind of usage patterns or user groups exist in the first place.
Deeper insights into user behavior on such portals can pro-
vide valuable information to devise strategies for a better
support of users in exploring and finding existing ontologies,
and thereby enable better ontology reuse. To that end, we
study and group users according to their browsing behavior
on BioPortal and use data mining techniques to character-
ize and compare exploration strategies across ontologies. In
particular, we were able to identify seven distinct browsing
types, all relying on different functionality provided by Bio-
Portal. For example, Search Explorers extensively use the
search functionality while Ontology Tree Explorers mainly
rely on the class hierarchy for exploring ontologies. Further,
we show that specific characteristics of ontologies influence
the way users explore and interact with the website. Our
results may guide the development of more user-oriented
systems for ontology exploration on the Web.
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1. MOTIVATION
Facilitating reuse on the Semantic Web requires support

for effectively finding and exploring existing semantic re-
sources such as ontologies or taxonomies. Particularly in
the biomedical domain, where ontologies are highly special-
ized, costly and often created collaboratively by large groups
of domain experts, identifying and finding existing seman-
tic vocabularies and terminologies is crucial. To support
researchers and practitioners in this task, the National Cen-
ter for Biomedical Ontology (NCBO) has developed Bio-
Portal1—the world’s most comprehensive online repository
of biomedical ontologies [21, 16, 33, 18].
Problem. In this paper, we want to shed light on how
users are exploring ontologies and terminologies in BioPor-
tal. Without a deep understanding of how to facilitate the
exploration of existing ontological resources on the Web, in-
creasing the reuse of ontologies on the Semantic Web will
remain an elusive goal. Towards that goal, we want to (i)
cluster traces of user interactions to obtain different explo-
ration behavior types and (ii) investigate ontologies in terms
of their user behavior. New insights into user behavior on
such portals can potentially provide actionable information
to devise strategies that better support researchers and prac-
titioners in exploring existing ontologies, and thereby may
enable better reuse of ontological content in general.
Approach. To identify different types of user behavior
on BioPortal, we adopt a clustering approach based on (i)
dynamic browsing features extracted from the Apache logs
of BioPortal and on (ii) calculating stationary distributions
from first order Markov chain representations of user tran-
sitions. We demonstrate the effectiveness of our approach
and investigate if and to what extent exploration strategies
of users differ when exploring biomedical ontologies on Bio-
Portal. In addition, we use Principal Component Analysis
(PCA) to visually inspect the obtained clusters.

Contributions. We present an approach for identify-
ing different user behavior types in ontology exploration log
data using stationary distributions from first order Markov
chains. We provide evidence for a total of seven distinct
browsing-behavior types on BioPortal and offer an interpre-
tation of their relevance and meaning. We use these differ-
ent types of exploration behavior to characterize ontologies
in terms of the different user interactions they attract. We

1http://bioportal.bioontology.org



Table 1: Overview of all actions available in the BioPortal user interface.
Action Labels Description

Main Page
Browse Main Page, Browse Ontologies, Browse Search, Browse
Help, Browse Mappings, Browse Recommender, Browse Annotator,
Browse Resource Index, Browse Projects, Browse Notes

Browsing main areas and functionality of
BioPortal.

Ontology Page

Ontology Summary, Browse Ontology Classes, Browse Ontology
Class, Browse Ontology Class Tree, Browse Ontology Mappings, On-
tology Analytics, Browse Ontology Widgets, Browse Ontology Vi-
sualization, Browse Ontology Notes, Browse Ontology Properties,
Browse Widgets, Browse Ontology Property Tree, Browse Class
Notes

Labels for actions that can be performed
while browsing a specific ontology on

BioPortal.

Edit Content
Create Ontology Submission, Validate Ontology File, Virtual Appli-
ance Download, Browse Ontology Submission

Actions triggered when uploading new
versions of ontologies.

User Account Login, Log-Out, Sign-Up, Lost Password, Browse Account, Feedback Actions to manage accounts on BioPortal.

Control Term BREAK ≥30 minutes inactivity between two actions.

find that particular characteristics of semantic resources, as
represented on BioPortal, influence how users interact with
them. For example, BioPortal lacks the ability to visual-
ize flat ontologies (i.e., ontologies without a structured hi-
erarchy), which fuels the emergence of diverse exploration
strategies as identified by our approach. Overall, our work
advances our understanding of ontology exploration behav-
ior on prominent repositories of biomedical ontologies on the
Web.

2. RELATED WORK
Biomedical Ontology Repositories. There exists a vast
variety of repositories for ontologies and taxonomies with
similarly diverse core interests. We provide a brief overview
of the most important projects from the biomedical domain
and describe how they are related to BioPortal. The Open
Biomedical Ontologies (OBO) Foundry [25] initiative col-
lects and maintains a set of different ontologies, which are
specifically designed for interoperability. The whole library
of ontologies is available on GitHub2 and developers of on-
tologies aspire to have their content included in the OBO
Foundry. All ontologies of the OBO Library are automati-
cally imported into BioPortal.

The European Bioinformatics Institute [11] maintains the
Ontology Lookup Service which provides an alternative me-
chanism for accessing content in the OBO Library.

The Unified Medical Language System (UMLS) [1] is a
collection of biomedical terminologies and ontologies dis-
tributed by the National Library of Medicine. Terms in
UMLS are mapped to one another through the UMLS Meta-
thesaurus. Similarly to OBO Foundry, the content of UMLS
is also available for exploration in BioPortal.

The majority of research about (biomedical) ontology re-
positories focuses on the selection and maintenance (includ-
ing provenance) of the included ontologies and taxonomies.
In this paper, we present analyses that complement existing
research by studying aspects about the interaction behav-
ior of users on BioPortal [21, 16, 33, 18]—one of the largest
biomedical ontology and taxonomy repositories on the Web.
User Interactions on the (Semantic) Web. A lot of
research has addressed the tasks, actions, tools and processes
required for developing and evaluating ontologies [8]. This
has led the Semantic Web community to develop a variety of
different guidelines and methodologies [23] or compile best
practices [17] for engineering ontologies.

2http://obofoundry.org

Engineering ontologies collaboratively can potentially lead
to structural conflicts since several users can edit ontologies
simultaneously. To circumvent this, Hellman and Gal [9]
propose locking mechanisms based on a graph depiction of
the concept dependencies. Pesquita et al. [19] leveraged the
location and specific structural features to show that these
can be used to determine if and where the next change is
going to take place in the Gene Ontology3.

To learn more about the impact and quality of collabo-
ration in collaborative ontology-engineering projects, Stroh-
maier et al. [26] investigated the hidden social dynamics that
take place in such projects from the biomedical domain and
provided new metrics to quantify various aspects of the col-
laborative engineering processes. User roles have been also
studied from many different angles. For example, Falconer
et al. [6] investigated and classified users according to differ-
ent roles in collaborative ontology-engineering projects. In
2014, Van Laere et al. [27] used K-means and the GOSPL
methodology to classify users by clustering interactions that
users engage in, while engineering an ontology. Wang et
al. [32] used association-rule mining on the change-logs of
collaborative ontology-engineering projects, and showcased
the utility of the identified editing patterns in a prediction
experiment. Walk et al. [28] studied user editing trails of
ontology-engineering projects by defining and comparing a
set of hypotheses about how users edit ontologies.

Further, there has been increasing interest on analyzing
and categorizing human sequences in the past, including mo-
bility [5], page access [7, 12], edit [28, 30, 31] as well as click
stream logs [24]. Additionally, Markov models of various or-
ders have been employed [2, 15, 20, 4, 22, 29] to model
and predict clicks or interactions of users on the (Semantic)
Web. Recently, Chierichetti et al. [3] conducted an analy-
sis that questioned if a first-order model best represents the
navigation behavior of humans on the Web. In this direc-
tion, the work in Lakshimarayan et al. [13] demonstrates
that higher order Markov chains can be used to model Web
browsing behavior and predict user intent towards buying
specific products.

Making sense and interpreting such sequential data is not
a trivial task. The work in Hoxha et al. [10] proposes a
platform to analyze user browsing patterns by semantically
formalizing the usage logs of Web data, providing means
to query and retrieve sessions of users that satisfy certain
semantic and temporal conditions. Research has also been

3http://www.geneontology.org



(a) Seconds between Requests (b) Requests per IP (c) Ontologies per User (d) Requests per Session

Figure 1: BioPortal Characteristics. Entities on the x-axes for all figures are binned according to the displayed
values and cut-off at their maximum values for reasons of readability. The seconds between requests (a) are
heavy-tailed, meaning that the majority of requests are conducted within short periods of times. The number
of request actions per IP (b), a proxy for users on BioPortal, is heavy-tailed. The majority of users have
visited only a total of one or two ontologies and (c) the majority of sessions exhibit a small number of requests
(d).

focused on human behavior beyond browsing patterns and
study reading behavior of users in Wikipedia as well as
the stability of the reading patterns per user [14]. A more
generic approach is proposed in [24] where the authors present
HypTrails—a Bayesian methodology that allows researchers
to compare and rank hypotheses about digital trails on the
Web, which has also been applied on the edit logs of collab-
orative ontology-engineering projects by Walk et al. [28].

To the best of our knowledge, analyzing how users explore
ontologies in the context of ontology repositories on the Web
has not been addressed as in-depth before.

3. MATERIALS & METHODS

3.1 BioPortal
BioPortal—an online biomedical ontology and taxonomy

repository—was created by the National Center for Biomed-
ical Ontology (NCBO). The main goals of NCBO involve not
only the creation and maintenance of a comprehensive repos-
itory of biomedical ontologies and terminologies, but also the
task of building novel tools and Web services to enable and
augment the (re)use of all stored semantic vocabularies and
terminologies in clinical and translational research. BioPor-
tal currently contains more than 500 biomedical ontologies,
and supports a wide range of Web services, such as using on-
tologies for annotating resources and generating value sets or
specific ontology views. Additionally, BioPortal allows users
to explore ontological content not only by using a standard
tree browser, but it can also visualize resources using cus-
tom tailored widgets, which help users in comprehending
the complexity of large biomedical resources (see Table 1 for
all click types). Similarly, the website provides functionality
to explore mappings between ontologies, which can be used
to directly compare the use of related terms as well as the
overlap between different ontologies.

3.2 Data Acquisition & Preprocessing
For the analyses presented in this paper, we have parsed

all the requests stored in the Apache logs of BioPortal from
12/31/2015 to 07/19/2016 (around 7 months; cf. Table 2).
Each line in the request logs contains information (among
others) about the IP, the timestamp, the actual resource that
was requested and the useragent, which is used to provide
additional information about the requester, such as browser,
operating system or name of the bot/spider, for each request.

Preprocessing. In a first step, we reduced a total of roughly
51.8M entries (7 months) to 16.7M by removing all requests
that were conducted by bots, spiders and other automatic
scripts via the combination of existing useragent and IP
blacklists as well as through manual inspections.

Then, we reduced our dataset to only include requests,
which were triggered by users and involve an actual inter-
action with the website. For example, if users click on an
ontology name, many automatic requests (AJAX calls) are
triggered, which do not represent interactions of users, and
are hence filtered from our dataset. Note that we consider
all interactions that trigger a request for our analyses. For
example, we consider search queries entered by users on Bio-
Portal as interactions with the website. After preprocessing,
we still have a total of 2.52M requests (see Table 1), gen-
erated by 215, 908 unique IP addresses over the course of 7
months. Note that the number of different ontologies that
users requested is larger than the number of stored ontolo-
gies in BioPortal. Whenever users manually type in requests
in the browser, typos can occur. Further, ontologies on Bio-
Portal are also not only accessible through their abbrevia-
tions but also through their internal IDs. In both situations,
the number of unique ontologies in the request logs increases,
while the number of stored ontologies remains unaffected.
Dataset Characteristics. The distribution of time be-
tween requests (seconds) is depicted in Figure 1(a). The
seconds between requests are heavy-tailed, meaning that the
majority of requests are performed within 0-10 seconds.

To be able to asses if and to what extent we are able to
observe power users—very active users who contribute the

Table 2: Characteristics of the BioPortal dataset.
Feature Value

Unique IPs 215, 908
Unique IPs (with ≥ 2 requests) 168, 008
Ontologies 1, 818 (517)
Actions (ca.) 2.52M

Sessions (time between requests ≥ 30 mins) 513, 659
1-request sessions 165, 543
# requests in ≥ 2-request sessions 2, 36M
Average/Median session duration 217s/0s

First request 2015/12/31
Last request 2016/07/19
Observation period (ca.) 7 months



Table 3: Example of a session. Using the Apache logs of BioPortal, we can chronologically order the requests of
each user (identified by IP) individually, assign action labels to each request and create a sequence of actions,
which can not only be used to fit first-order Markov chains, but also to calculate stationary distributions for
each user.

Timestamp Type Request Action Labels (Sequence Step)

2016-03-14 09:07:32 GET / Browse Main Page (1)
2016-03-14 09:07:46 GET /login?redirect=http%3A%2F%2Fbioportal.bioontology.org%2F Login (2)
2016-03-14 09:07:48 POST /login Login (3)
2016-03-14 09:07:50 GET / Browse Main Page (4)
2016-03-14 09:08:04 GET /ontologies/MCCV Ontology Summary (5)
2016-03-14 09:08:22 GET /ontologies/MCCV/submissions/new Create Ontology Submission (6)
2016-03-14 09:09:34 POST /ontologies/MCCV/submissions Create Ontology Submission (7)
2016-03-14 09:09:59 GET /ontologies/success/MCCV Create Ontology Submission (8)
2016-03-14 09:10:14 GET /ontologies/MCCV Ontology Summary (9)

Sequence: Browse Main Page –> Login –> Login –> Browse Main Page –> Ontology Summary –> Create Ontology Submission –> Create Ontology Submission
–> Create Ontology Submission –> Ontology Summary

majority of all requests—we have grouped users (in the form
of IP addresses) according to the number of requests they
have contributed and visualized the results in Figure 1(b).
While the majority only conduct a very small number of
requests (between 1-10), we were able to identify 30 users
who conducted more than 5, 000 interactions on BioPortal
within 7 months. Additionally, we were able to identify that
the majority of users only visit one or two ontologies on the
website (cf. Figure 1(c)).

Finally, we aggregated all requests of users into sessions.
Each session contains all chronologically sorted interactions
of one user, unless two interactions are apart more than 30
minutes. In that case, the current session is closed, a new
session is opened and the process is repeated. We have se-
lected 30 minutes as threshold, as the requests per IP are
heavy-tailed and the majority of timespans between requests
are within that threshold, introducing only a small number
of sessions. We were able to group all of the 2.52M requests
into a total of 513, 659 sessions, where 165, 543 only con-
sist of a single interaction. As depicted in Figure 1(d), the
majority of sessions in BioPortal exhibit a low number of
requests, while only very few sessions last for more than 100
requests.
Action Label Mapping. Finally, we created a set of regu-
lar expressions to map each request to easier-readable labels
(cf. Table 1 for all the different types of labels). In general,
the generated action labels can be grouped into 5 different
categories. The two most important groups of action labels
are the ones accessible from the main page of BioPortal, such
as Browse Ontologies or Browse Search, and the ones that
describe actions conducted on single ontology pages, such as
Browse Ontology Class or Browse Ontology Property Tree.

Action Sequence Generation. Using the action labels we
are able to extract easily readable chronological sequences of
actions for each user on BioPortal (see Table 3). Whenever
an IP address exhibits two or more sessions, we connect the
sessions with a BREAK state to be able to see where users
stop and resume browsing BioPortal.

3.3 Modeling Browsing Behavior
We model user browsing behavior on BioPortal with mem-

oryless Markov chains. A Markov chain consists of n states
si from a finite state-space S with n = |S| and a transition
matrix P ∈ Rn×n where pij defines the probability to tra-
verse from state si to state sj . Since each row in P defines
a probability distribution for each i we have

∑
j pij = 1.

We represent each action on BioPortal as a single state of
a Markov chain (see Table 1). Then, an element pij from the
transition matrix P represents the probability of performing
action j after action i has been performed.

To compare users with each other we compute P and its
stationary distribution for each individual user. In our case,
the stationary distribution is a probability distribution over
actions, which defines how likely we will find a user per-
forming a given action in the limit of large number of steps.
Generally, the stationary distribution captures the way how
users move between actions, i.e. it encodes the sequential
interactions within an n-dimensional vector, and therefore
provides additional information over simple view counts (cf.
Table 4).

To compute stationary distributions, we first define the
weighted matrix A ∈ Rn×n, where each element aij is set to
the number of observed transitions between states i and j in
our empirical dataset (see Table 1 for all possible states). A

Table 4: Stationary Distribution and Page Views Illustration. Given a vector of page views (2xA, 2xB and
2xC) the stationary distribution depends on the order of the appearance of each state in the sequence. For
example, given a sequence of “ABCABC”, we create a weighted matrix by counting the transitions between
the three states A, B and C. Normalizing each row produces the transition matrix P , which we use to calculate
the stationary distribution π (top row). For a user with the same page views, but a different sequence, we
obtain a different stationary distribution (bottom row). The static page views remain unaffected by the
ordering of the sequence, as only the total number of occurrences of each state is considered.

Sequence Weighted Matrix Transition Matrix Stationary Distribution Page Views

ABCABC A =

0 2 0
0 0 2
1 0 0

 P =

0 1 0
0 0 1
1 0 0

 π =

0.3533
0.3356
0.3111

 2
2
2


AABBCC A =

1 1 0
0 1 1
0 0 1

 P =

0.5 0.5 0
0 0.5 0.5
0 0 1

 π =

0.5229
0.2916
0.1855

 2
2
2





(a) Selection of K (b) Stationary Distribution Clusters

Figure 2: User Behavior Clusters. To estimate the number of clusters to investigate, we have plotted the
percentage of the explained variance (y-axis) per cluster (x-axis) in (a) for the stationary distribution clusters
(solid blue) and the page view clusters (dashed green). We select the number of clusters (7) to a value where
the introduction of new clusters only minimally increases the explained variance (red circles). To further
investigate the results of K-means, we have reduced and visualized the stationary distribution vectors of each
user to three dimensions using principal component analysis in (b). Each point represents one user of our
dataset, while the colors represent the corresponding clusters obtained by K-means (before dimensionality
reduction). We provide labels for the clusters and the extremes of the axes. The latter represent the actions
with the smallest and highest coefficients of the corresponding principal components (see Table 5).

transition matrix P has to satisfy certain conditions to have
a stationary distribution, most notably irreducibility (each
action has to be reachable from all other actions) and ape-
riodicity (the return times to actions have to be aperiodic).

To guarantee both irreducibility and aperiodicity, we add
a teleportation factor α to A, which (technically) would al-
low users to teleport between all actions with a very small
probability, similar to PageRank. The teleportation factor
connects each state to all others (satisfying irreducibility)
including a self-loop (satisfying aperiodicity):

W = A+
α

n
11T , (1)

where we set α = 0.15 and 1 is a vector of all ones from
Rn. Finally, we normalize each row in W to sum up to 1 to
obtain the transition matrix P .

Now, the stationary distribution π can be calculated as
the left eigenvector of P with its largest eigenvalue 1 and the
stationary distribution satisfies the eigenvalue equation for
the matrix P : πT = πTP . An example calculation of the
stationary distribution (without the teleportation factor) is
depicted in Table 4. Assuming two users exhibit the same
number of page views on the pages A, B and C, we can in-
corporate the information about the chronological ordering
of the sequence by calculating the stationary distribution.
Hence, a sequence of “ABCABC” page visits (top row of
Table 4) yields a different stationary distribution than a se-
quence of “AABBCC” page visits (bottom row of Table 4).

3.4 Clustering Browsing Behavior
To deepen our understanding about the browsing behav-

ior of users on BioPortal, we first group similar users. To
that end, we use K-means—an unsupervised clustering al-
gorithm—which clusters “close-by” users. For K-means we
need to embed users in a vector space so that their proximity

can be determined by, for example, pairwise Euclidean dis-
tances between user vectors. For that purpose we represent
users with their stationary distribution vectors.

Once, when users are represented as vectors, K-means
randomly selects K initial central vectors (centroids), where
K has to be manually set and defines the number of clusters
the algorithm will find. In every iteration, each user vector
is assigned to the closest centroid. The positions of the cen-
troids are then updated (i.e., moved towards the center of
the corresponding vectors).

This process continues until convergence, that is until the
displacement of the centroids between iterations is below a
certain threshold. Note that the choice of the clustering al-
gorithm is arbitrary and we leave it open to future work, to
determine which algorithm is best suited for a specific appli-
cation. For illustration purposes, we have chosen K-means
as it is well studied and can handle large datasets (168, 008
distinct users, clustered over 34 action-label dimensions).

4. RESULTS

4.1 Differences in User Browsing Behavior
We have calculated the stationary distribution for each

user as described in Section 3.4, and used K-means to group
them accordingly. Additionally, we clustered users using
static page view vectors.
Estimating & Validating K. To estimate a plausible
number of clusters, which best represent the different types
of browsing behavior in BioPortal, we have calculated the
percentage of variance explained by 1 to 25 clusters for our
empirical data (cf. Figure 2(a)). This method is also often
referred to as “elbow”-method, and states that the optimal
value for K, given empirical data, should be set so that the
introduction of additional clusters only minimally increases



Figure 3: Browsing-Behavior Types: We have extracted and visualized the transition probabilities between
the different actions for all 7 clusters obtained by K-means when using the stationary distribution vectors
(bottom). Transitions are always read From State (left) to To State (bottom) and rows are normalized
individually. The darker the colors, the higher the transition probability between two states. Histograms
of the actions are depicted on top of the transition matrices and indicate their absolute occurrences in the
extracted sequences for each cluster. All of the clusters exhibit differences in the frequencies (histograms)
and transition probabilities.

the explained variance. For both our experiments, the clus-
tering via the stationary distributions and page views, the
best value for K is 7.

To be able to visually inspect and validate the resulting
clusters, we have extracted three principle components by
applying PCA on the stationary distribution vectors and vi-
sualized the results (see Figure 2(b)). Each point represents
one user of our dataset and the colors indicate one of the
seven clusters suggested by K-means. Additionally, we have
added (i) the action labels with the largest and smallest co-
efficients (see Table 5) to the corresponding axes to allow

for manual interpretation and (ii) provide labels for the dif-
ferent clusters. We can see that the clusters obtained by
K-means, when using the stationary distribution vectors,
are easily distinguishable and warrant further inspection.
Categorizing Clusters. Hence, we have extracted and vi-
sualized the action sequences of all clusters (see Figure 3;
the colors correspond to the clusters in Figure 2(b)) indi-
vidually. Note that we have removed actions with very few
occurrences from the visualizations for reasons of readabil-
ity, which is why the transition probabilities of the rows in
Figure 3 do not necessarily sum up to 1.0.



Using the stationary distribution as input for K-means,
we were able to obtain a total of 7 distinguishable browsing-
behavior types on BioPortal:
The Main Page Visitors primarily visit the main page
of BioPortal and exhibit very few other actions. The clus-
ter consists of 2, 813 users with an average of 32.2 actions
(median of 2) per user.
The Ontology Overview Visitors consist of 2, 668 users,
who primarily visit ontology overview pages and refrain from
exploring the classes of the ontologies. The average user in
this group performs 22.7 actions (median of 3).
The group of Class Explorers, the biggest cluster with a
total of 109, 159 users, specifically target and visit classes of
the different ontologies hosted on BioPortal. The average
number of actions for this group is 3.6 (a median of 2).
Ontology Tree Explorers use the hierarchical representa-
tion of an ontology on BioPortal to explore and browse the
content of an ontology. A total of 4, 490 users belong to this
group with an average of 77.3 actions (median of 14).
A total of 6, 701 Search Explorers make extensive use of
the search functionality provided by BioPortal to identify,
explore and find classes in the ontologies. On average, users
of this cluster conduct 92.1 actions (median of 18).
Specific Class Browsers represent the second largest brow-
sing behavior type with 22, 436 users. In contrast to Search
Explorers, this group exhibits shorter browsing sessions, ev-
ident in the higher number of BREAK states, and concen-
trates on exploring multiple classes of a specific area of an
ontology (as opposed to whole ontologies, by inspecting the
ontology class tree). The average number of actions for users
in this group is 24.9 with a median of 8.
The final group are BioPortal Experts, who use several
features that BioPortal provides to find and explore ontolo-
gies and classes, such as the annotator and recommender.
On average, the 19, 741 users of this cluster performed 24
actions (median of 4).
Comparison to Page Views. We repeated the same ex-
periment with the static page view vectors as input for K-
means and manually inspected the results for K = 7 clus-
ters. In contrast to the results shown in Figure 2(b), we
were only able to distinguish a total of four different kinds
of browsing-behavior types. The biggest group of users are
the Search Explorers, consisting of a total of 167, 979 users
and a total of four different clusters with 167, 631, 1, 21 and
326 users respectively. We consider them as single cluster
as the actions and transition matrices of these groups were
nearly indistinguishable upon manual inspection. The three
remaining clusters, Class Explorers, Ontology Tree Explorers
and Feedback Providers, are again very small, with only 3, 6
and 20 users respectively.
Increasing K. Additionally, we have manually explored
up to 14 clusters obtained from K-means, using the station-

Table 5: Principal Component Coefficients. The ex-
plained variance for the first principal component
(PC1) is 63.67%, for the second (PC2) 73.57% and
80.53% for the third (PC3).

Action Label PC1 PC2 PC3

Browse Search −0.1897 +0.9088 −0.0368
Ontology Summary −0.1253 −0.2736 +0.6240
Browse Main Page −0.1236 −0.2785 −0.7712
Browse Ontology Class +0.9571 −0.0702 −0.0127

ary distributions as input. Due to the information inherent
in the stationary distribution, we could further refine the
obtained class labels. In additional to the seven clusters
outlined before, we identified Annotators (542 users), Wid-
get Browsers (399 users), Search & Tree Explorers (3, 685
users), Feedback Providers (9, 311 users) and Account Main-
tainers (374 users).

4.2 Differences when Exploring Ontologies
To be able to learn more about exploration and usage

strategies of users, we were interested in identifying differ-
ences in the distribution of browsing-behavior types that
interact with the different ontologies on BioPortal. Hence,
we have determined the number of users for each browsing-
behavior type cluster for the 50 most visited ontologies in
our dataset and aggregated the corresponding number of
actions. Finally, we have applied PCA on the aggregated
numbers of requests per cluster and visualized the results
(similar to Figure 2(b)) to identify differences in the brow-
sing-behavior types between projects (see Figure 4(a)). The
larger the difference in actions performed by different brow-
sing-behavior clusters for each project, the larger the dis-
tance between the projects.

Due to limitations in space, we restrict the presentation of
results to two projects. In particular, we compare the brows-
ing behavior of users for the Current Procedural Terminol-
ogy (CPT) as well as RxNorm (RXNORM). The former is a
terminology, which is maintained by the American Medical
Association, and is used to describe services in the medi-
cal, surgical, and diagnostic domain (mostly exclusive) for
billing purposes in the US. The latter was developed by the
National Library of Medicine as a public resource for various
applications, and represents a terminology that contains all
medications available on the US market. We have selected
CPT and RXNORM, as they are among the ontologies that
have received the most visits, exhibit substantially different
rankings for the actions per browsing-behavior cluster and
were initially designed for different practical applications.
Sequence Extraction. For this analysis, we have extracted
all sequences of all users, who performed at least 20% of all
their actions on one of the corresponding projects. As a
consequence, sequences are not mutually exclusive, mean-
ing that one user could be present in both of our extracted
action sequences if that user performed at least 20% of all
clicks on CPT and another 20% on RXNORM. Given that
the majority of users only visit one or two ontologies (see
Figure 1(c)) and that there are many actions, which can
not be assigned to an ontology, 20% of all actions already
represents a very high filtering criterium. Overall, we col-
lected a total of 61, 367 unique IP addresses for CPT, which
conducted on average 10.7 actions (median of 2). In con-
trast, we extracted action sequences of 23, 757 IP addresses
for RXNORM, with an average of 8.6 actions (median of 2).
The aggregated actions for each cluster for the two ontolo-
gies are listed in Table 6.

Table 6: Actions for CPT & RXNORM.
User Type CPT Actions RXNORM Actions

Class Explorers 120, 926 (3) 49, 440 (2)
Specific Class Browsers 187, 987 (2) 88, 068 (1)
BioPortal Experts 19, 934 (5) 12, 755 (4)
Main Page Visitors 195, 030 (1) 35, 869 (3)
Ontology Tree Explorers 78, 485 (4) 1, 478 (5)
Ontology Overview Visitors 252 (7) 69 (7)
Search Explorers 1, 142 (6) 224 (6)



(a) Ontology Projects over Principal Components (b) Comparison of Exploration Behavior (CPT
& RXNORM)

Figure 4: Comparison of Exploration Behavior. We have aggregated the number of actions per browsing-
behavior cluster, applied PCA and plotted the landscape of exploration behavior types for the 50 most visited
ontologies (blue points) in (a). The extremes of the axes correspond to the clusters with the largest and
smallest coefficients of PCA respectively. We have added labels for the ontologies and terminologies where
appropriate. The inset magnifies the densely concentrated group of ontologies. The larger the difference in
actions performed by different browsing-behavior clusters for each ontology, the larger the distance between
ontologies. The detailed comparison of CPT (green) and RXNORM (brown) is depicted in (b). The histogram
(top) depicts how often the different actions occurred in the extracted sequences in both ontologies. The
transition matrix (bottom) depicts the importance of the transitions between actions of users while browsing
CPT (blue) and RXNORM (brown). Transitions that are equally important in both projects are white.
The transition from Browse Search (From State) to Browse Ontology Class (To State) is more dominant for
RXNORM. Additionally, RXNORM exhibits a very small number of Browse Ontology Class Tree actions.

Comparing Browsing-Behavior Types. To visualize
and investigate the differences in browsing-behavior strate-
gies between the two ontologies, we have fit a first-order
Markov chain on the extracted sequences of both projects
and visualized the difference between the two transition ma-
trices in Figure 4(b). Note that we only display the top 10
most frequent actions for reasons of readability.

CPT—being the more popular ontology—received roughly
three times more requests than RXNORM, as shown in the
histogram on top of Figure 4(b). The most common actions
for both projects are Browse Ontology Class and Browse
Search. In contrast to RXNORM, users of CPT also rely on
the hierarchy of the ontology to browse classes (see Browse
Ontology Class Tree in Figure 4(b)). This is not surpris-
ing, as RXNORM is a flat ontology, which does not have
a hierarchy that can be visualized by BioPortal. This also
explains why the relative importance of the transition from
Browse Search to Browse Ontology Class is more dominant
for RXNORM, than it is for CPT (evident in the dark brown
transition probabilities in Figure 4(b)).

5. DISCUSSION
In this paper we have analyzed, modeled and clustered

the browsing behavior of users on BioPortal. In particular,
we have grouped users according to their browsing behavior

in Section 4.1 and compared how users explore ontologies in
Section 4.2.
Differences in Browsing-Behavior Types. We have
shown that we were able to obtain multiple, clearly dis-
tinguishable browsing-behavior types, when using station-
ary distribution as input for K-means. Further, we have
calculated the explained variance per cluster to determine
the number of browsing-behavior types to investigate. The
manual inspection of the obtained clusters shows that users
primarily concentrate on browsing specific classes (Class Ex-
plorers and Specific Class Browsers) of biomedical ontolo-
gies on BioPortal. Two strategies of users to explore on-
tologies involve the exploitation of the ontological hierarchy
(Ontology Tree Explorers; if available) and the search func-
tionality provided by BioPortal (Search Explorers). Users in
the third-largest cluster (19, 741)—BioPortal Experts—use
advanced functionality, such as the annotator or the recom-
mender, to find classes and explore ontologies.

The comparison of our results with clusters obtained from
static page views indicate that the inclusion of information
about the dynamic nature of a user’s interaction behavior
with a website is important. We were able to distill a to-
tal of 7 information consumption strategies, which we would
have otherwise not identified. Note that the presented re-
sults reflect how users interact with BioPortal from a purely



data-driven analysis and further analyses are required to de-
termine the generality of our findings.

In general, our results indicate that users exhibit a pref-
erence to explore and browse the content of the classes of
biomedical ontologies. However, this also indicates that ad-
ditional efforts are warranted to promote and further en-
hance and evaluate the utility of the functionality provided
by BioPortal to explore and find ontologies. For example,
only a small portion of users (the BioPortal Experts) tra-
verse along and use mappings between ontologies when vis-
iting BioPortal. Further, the sooner we can assign a user
type to any given visitor, the better we can leverage our re-
sults and automatically adapt caching and recommendation
strategies to anticipate the next click.
Differences when Exploring Ontologies. Our results
indicate that several characteristics of ontologies, such as
the hierarchical structure (or lack thereof), can influence
how users explore and interact with these semantic vocab-
ularies and terminologies on BioPortal. One particular ex-
ample of such an ontology is RXNORM, which does not
exhibit a structured hierarchy, and is thus not displayed in
the class explorer on BioPortal. The only ways to inter-
act with classes of this ontology on the website is to either
use the search functionality, which requires prior knowledge
about the content of the ontology, or to rely on mappings
from other ontologies. However, this also explains the strong
focus of users/visitors of RXNORM to use the search func-
tionality (Browse Search) to explore, investigate and find
classes of this ontology on BioPortal (see Figure 4(b)).

In contrast, the structural hierarchy of CPT is used by
BioPortal to visualize the class tree. Hence, to explore the
ontology, users can (and do)—aside from searching (Browse
Search) for specific classes—use and explore the hierarchy
(Browse Ontology Class Tree) to find a specific class. Note
that we have only presented the differences in browsing-
behavior types for two of more than 500 ontologies! Yet,
we have shown that simple differences (i.e., the lack of a
class hierarchy) between projects cause users of BioPortal
to employ different strategies to find classes or explore the
ontological content. We leave it open for future work to con-
tinue this line of investigation to identify characteristics and
features of ontologies causing differences in how users seek
and consume information stored inside them.

6. CONCLUSIONS & FUTURE WORK
In this paper, we have presented an approach for iden-

tifying different types of user behavior in ontology explo-
ration log data using stationary distributions from first or-
der Markov chains. We provide evidence for a total of 7 dis-
tinct browsing-behavior types on BioPortal and offer an in-
terpretation of their relevance and meaning. In addition, we
cluster ontologies by their user behavior and identify prag-
matic commonalities among ontology projects. Our results
advance our understanding of the ways in which ontologi-
cal repositories, such as BioPortal, are used and may guide
the development of more user-oriented systems for ontology
exploration and reuse on the Web.

For future work, we are particularly interested in further
elaborating the comparison between the browsing behav-
ior of different ontologies on BioPortal. In doing that, we
might be able to identify commonalities for groups of ontolo-
gies that trigger differences in the way users interact with
ontologies on BioPortal. Understanding the different ways

in which semantic structures may influence ontology explo-
ration behavior has the potential to help in the design of
BioPortal as well as in the development of more effective
and more reusable ontologies. Additionally, we would like
to compare the results presented in this paper to usability
studies, testing the utility of different features in BioPortal
and how they—on a qualitative level—influence the brows-
ing behavior of users.
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