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Abstract Many online collaboration networks struggle to gain user activity and become self-sustaining
due to the ramp-up problem or dwindling activity within the system. Prominent examples include online
encyclopedias such as (Semantic) MediaWikis, Question and Answering portals such as StackOverflow, and
many others. Only a small fraction of these systems manage to reach self-sustaining activity, a level of
activity that prevents the system from reverting to a non-active state. In this paper, we model and analyze
activity dynamics in synthetic and empirical collaboration networks. Our approach is based on two opposing
and well-studied principles: (i) without incentives, users tend to lose interest to contribute and thus, systems
become inactive, and (ii) people are susceptible to actions taken by their peers (social or peer influence).
With the activity dynamics model that we introduce in this paper we can represent typical situations of
such collaboration networks. For example, activity in a collaborative network, without external impulses
or investments, will vanish over time, eventually rendering the system inactive. However, by appropriately
manipulating the activity dynamics and/or the underlying collaboration networks, we can jump-start a
previously inactive system and advance it towards an active state. To be able to do so, we first describe
our model and its underlying mechanisms. We then provide illustrative examples of empirical datasets and
characterize the barrier that has to be breached by a system before it can become self-sustaining in terms
of critical mass and activity dynamics. Additionally, we expand on this empirical illustration and introduce
a new metric p—the Activity Momentum—to assess the activity robustness of collaboration networks.
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1. INTRODUCTION

One of the major problems faced by both, new and existing online social and collaboration
networks—such as Facebook or StackOverflow—revolves around e�ciently identifying and
motivating the appropriate users to contribute new content. In an optimal scenario, this
newly contributed content provides enough incentive for other users to contribute, triggering
further actions and contributions. Once such a self-reinforced state of increasing activity is
reached, we can say that a system becomes self-sustaining, meaning that su�ciently high
levels of activity are reached, which will keep the system active without further external
impulses. For example, when looking at well-established collaborative websites, such as
StackOverflow or Wikipedia, we already know that at some point in time, these systems
have become self-sustaining (in terms of activity), evident in their steady growing number
of supporters and overall activity.

However, these self-sustaining states are neither easy to reach nor guaranteed to last. For
example, Suh et al. [2009] showed that the growth of Wikipedia is slowing down, indicating
a loss in momentum and perhaps even first evidence of a collapse. Moreover, we typically
lack the tools to properly analyze these trends in activity dynamics and thus, can not even
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(a) Intrinsic Activity
(blue) and Peer Influence

(yellow) at time t0

(b) Intrinsic Activity
(blue) and Peer Influence

(yellow) at time t1

(c) Intrinsic Activity
(blue) and Peer Influence

(yellow) at time t2

(d) Intrinsic Activity
(blue) and Peer Influence

(yellow) at time t3

Fig. 1: Intrinsic Activity and Positive Peer Influence. Activity dynamics in collabo-
ration networks, represented by users as nodes, collaboration as edges and activity as node
size (Figure (a)), are based on two opposing principles. The Activity Decay Rate postulates
the loss of intrinsic activity (blue color of nodes) per user over time. In contrast, the Peer

Influence Growth Rate follows the intuition, that users in collaboration networks are (pos-
itively) influenced by their peers (yellow color of nodes) where more active peers exercise
a higher influence than less active peers. We initialize the network at time t

0

with random
intrinsic activities. Nodes with a green halo at times t

1

to t
3

represent users that exhibit a
gain in their overall activity between two iterations t

n

and t
n+1

, as the exercised positive
peer influence is higher than the intrinsic loss of activity. Analogously, red halos represent
decreases in overall activity. At first, very central (high degree) nodes with smaller activity
values manage to increase their overall activity, while very active central nodes already start
to lose activity. After t

3

or more iterations, due to overall decreasing activities and hence,
decreasing peer influences, all nodes in the collaboration network eventually start to lose
activity and inevitably converge towards zero activity.

perform such simple tasks as detecting self-sustaining system states. Therefore, we argue
that new tools and techniques are needed to model, monitor and simulate activity dynamics
for collaboration networks.

The high-level contributions of this work are two-fold. First, we introduce a model that
is capable of simulating activity dynamics for online collaboration networks. Second, we
describe in detail how to fit the model to empirical datasets, simulate trends in activity
dynamics and interpret our findings. The proposed model is based on the formalism of
continuous deterministic dynamical systems—meaning that activity is modeled by a system
of coupled non-linear di↵erential equations. Each user of the system is represented by a
single quantity (the current activity), and the social ties between users define the coupling
of variables. In general, when using dynamical systems on networks, we define the (micro-
)behavior of each user to observe and gather new insights into the (macro-)behavior of the
system. For a more detailed introduction to dynamical systems see Section 5 and Newman
[2010]. For simplicity, we do not take individual di↵erences between users into account—the
dynamics and its parameters are the same for each user in the population. This allows us to
configure the model with a single parameter, which is a ratio of the following two parameters,
representing two basic activity mechanisms (cf. Figure 1) in online collaboration networks:

(i) Activity Decay Rate �, which postulates how fast users lose interest to contribute,
(ii) Peer Influence Growth Rate µ, postulating to what extent users are influenced by the

actions taken by their peers.

A first analysis of the model shows that activity dynamics in collaboration networks have
an obvious and natural fixed point—the point of complete inactivity—where all contribu-
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tions of the users have seized. However, by slightly manipulating the parameters in our
model we show that it is possible to destabilize the fixed point, resulting in a potential
increase of activity. We then outline the process of calculating the Activity Decay Rate

and Peer Influence Growth Rate for existing collaboration networks, simulate their corre-
sponding activity dynamics and expand our understanding of critical mass—via the notion
of System Mass and Activity Momentum—in collaboration networks by interpreting our
findings.
The remainder of this paper is structured as follows: In Section 2 we introduce and

examine our model analytically. We then continue with the model illustration by simulating
activity dynamics for a synthetic dataset and discuss di↵erent evolution scenarios of our
parameters and their implications. In Section 3 we outline the process of applying our
model on empirical datasets. In Section 4 we introduce the notion of System Mass and
Activity Momentum, review related work in Section 5 and summarize our findings and
discuss limitations and implications for future work in Section 6.

2. MODELING ACTIVITY DYNAMICS

We model activity dynamics in an online collaboration network as a dynamical system on
a network. Hereby, the nodes of a network represent users of the system and links represent
the fact that the users have collaborated in the past. We represent the network with an
n⇥ n adjacency matrix A, where n is the number of nodes (users) in the network. We get
A

ij

= 1 if nodes i and j are connected by a link and A
ij

= 0 otherwise. Since collaboration
links are undirected, the matrix A is symmetric, thus A

ij

= A
ji

, for all i and j. We denote
the total number of links in the network with m, and thus we have 2m =

P
ij

A
ij

.
We model activity as a continuous real-valued variable a

i

evolving on node i of the network
in continuous time t. The general time evolution equation can be written as follows (see
also Newman [2010]):

da
i

dt
= f

i

(a
i

)| {z }
Intrinsic Activity

Evolution of i

+

Peer Influencez }| {X

j

A
ij

g
i

(a
i

, a
j

)
| {z }

Influence of j on i

, (1)

where f(a
i

) specifies the intrinsic activity evolution of node i and g(a
i

, a
j

) describes the
influence of neighbor j on node i. To simplify, we assume that the intrinsic activity dynamics
as well as the influence of node neighbors are the same for each node i and for each neighbor
pair (i, j). This means that we have a single intrinsic activity function f(a

i

) for all nodes i,
as well as a single peer influence function g(a

i

, a
j

) for all node pairs (i, j).
In addition, we make the following assumptions:

Intrinsic Activity Decay. Without external incentives or without positive influence from
their social connections, each user has a tendency to slowly reduce activity. For example,
people slowly lose interest to participate in collaborative networks or exhaust their resources.
An observation that specifically reflects this inherent exhaust of activity over time has been
made by Danescu-Niculescu-Mizil et al. [2013] for di↵erent online communities. We model
this situation by using a linear function for f(a

i

):

f(a
i

) = ��a
i

,� > 0 (2)

We call parameter � the Activity Decay Rate—the rate at which users reduce their activity
per unit time, given a complete absence of other (positive) incentives. The specific form of
f(a

i

) results in an exponential decay (a
i

(t) = a
i

(t
0

)e��t, with a
i

(t
0

) being the initial activity
of node i at time t

0

) of activity without any external influence. Thus, without other positive
impulses the activity of every user will decay over time (see Figure 2(a)).
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(a) Intrinsic Activity Decay (b) Extrinsic Peer Influence

Fig. 2: Intrinsic Activity Decay is the rate at which users reduce their activity per unit
time and is represented as a linear function in the form of f(a) = ��a, which results in
an exponential decay in activity that converges towards zero. Extrinsic Positive Peer

Influence describes to what extent users are influenced by the actions taken by their
peers, and is represented as a monotonically increasing function of a users activity in the
form of g(a) = (qa)/

p
a2
c

+ a2. It naturally saturates at Maximum Peer Activity Flow q as
activity reaches infinity and, in our simulations, can never be negative per definition (see
Equation 3). When the user activity passes the point of the Critical Activity Threshold a

c

,
peer influence gains notable weight and influences neighbors to “do something” (become
active).

Positive Peer Influence. People tend to copy their friends [Christakis and Fowler 2008;
Aral and Walker 2012; Wagner et al. 2012], meaning that if neighbors of a node i are
active they will positively influence node i to become active as well. The magnitude of the
influence, or the “speed” at which the influence is transferred from an active node to its
neighbors will depend on two quantities (cf. Figure 2):

(i) Critical Activity Threshold a
c

, which represents a soft threshold of activity that marks
the point when users have an activity potential, that notably exercises influence on their
peers. Note that influence is exercised at all levels of a

c

. However, once a
c

is reached, the
influence is determined as “notable” (e.g., a level of activity that is above the average
activity per user) for the corresponding peers. Hence, this critical level of activity is a
system-dependent quantity. One can imagine that in a system with high user activity
(e.g., a large number of changes per user) the critical activity is higher than in a system
with lower levels of activity. For example, in the latter case the users will sooner notice
a neighbor who became active recently. We model the Critical Activity Threshold as a
continuous threshold. Meaning that active users will always influence their neighbors,
but will exercise more influence after they have passed the critical level of activity.

(ii) Maximum Peer Activity Flow q represents the maximum activity flow per unit time
from users to each of their neighbors. This maximum flow is reached as user activity
approaches infinity. However, substantial amounts of the maximum flow are already
reached whenever the user activity passes the level of the critical activity a

c

.

Thus, to model peer influence, we resort to a monotonically increasing function, where
more active neighbors are always more influential than less active ones. Additionally, the
function g(a

j

) saturates for su�ciently large values of activity, inducing a natural limit on
how much users can be influenced by their neighbors. We model this by setting g(a

i

, a
j

) =
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g(a
j

) and choosing an algebraic sigmoid function with:

g(a
j

) =
qaq

a2
c

+ a2
j

, q, a
c

> 0. (3)

Peer influence can also be analyzed in terms of the growth rate of g(a), in the form of the
derivative dg/da of the function g(a). After simplifying and rearranging, the growth rate
can be calculated as:

dg

da
=

qa2
c

(a2
c

+ a2)3/2
. (4)

In the limit of large activity a the derivative of g(a) tends towards zero, thus peer influence
saturates at q. On the other hand, the maximum change in influence is observed when
a = 0—neighbors who suddenly become active will be noted most, in terms of activity, by
their peers.

2.1. Dynamics Equation

With f(a
i

) and g(a
j

) defined, the activity dynamics equation becomes:

da
i

dt
= ��a

i

+
X

j

A
ij

qaq
a2
c

+ a2
j

. (5)

The di↵erent parameters of the equation have dimensions. For example, a
i

and a
c

have
activity as unit, t has seconds as unit, � is a rate and has inverse seconds as unit, and
q has activity per second as unit. Further, the equation has three free parameters, which
span a huge parameter space that is di�cult to explore in detail. Therefore, our first step
is to simplify the equation and express it in a dimensionless form, which typically also has
a smaller number of parameters as only their relative ratios, rather than their absolute
values, are of importance. Another advantageous side-e↵ect of a dimensionless formulation
is that it eliminates the absolute values of the properties under investigation, in our case
user activity, which can be di�cult to interpret.
There are many ways to eliminate dimensions from such equations [Lin and Segel 1988].

A useful heuristic is to try to first eliminate the dimensions from the most non-linear term
in the equation, which in our case is g(a

j

). Thus, we begin by defining a relative activity x
as the ratio between the activity a and the critical activity a

c

:

x =
a

a
c

. (6)

The variable x is dimensionless now, and it is easy to interpret. For example, the fact
that x = 5 means that users exercises a strong influence on their neighbors, since the
level of activity is five times the critical activity a

c

. In fact, the influence in this case is
g(5a

c

) = (5q)/
p
26 ⇡ 0.98q. On the other hand if x ⌧ 1 (e.g., x = 0.1), this then means that

the influence of users on their neighbors is much smaller as g(0.1a
c

) = (0.1q)/
p
1.01 ⇡ 0.1q.

By rearranging, substituting x for a and simplifying (a
c

cancels in the second term) our
activity dynamics equation reduces to:

a
c

dx
i

dt
= ��a

c

x
i

+
X

j

A
ij

qx
jq

1 + x2

j

. (7)

To eliminate the dimensions from the second term we divide both sides with q:

a
c

q

dx
i

dt
= ��

a
c

q
x
i

+
X

j

A
ij

x
jq

1 + x2

j

. (8)
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The term q/a
c

is the growth rate of the function g(a) evaluated at zero:

dg

da

����
a=0

=
qa2

c

(a2
c

+ a2)3/2

����
a=0

=
q

a
c

. (9)

This quantity gives the rate at which the influence on the peers grows if the user activity
experiences a small displacement from the point of zero activity. Let us now define this
quantity as Peer Influence Growth Rate and denote it with µ = q/a

c

since this will simplify
the algebra and will make the model interpretation more intuitive. Thus, the last equation
can then be written as:

1

µ

dx
i

dt
= ��

µ
x
i

+
X

j

A
ij

x
jq

1 + x2

j

. (10)

Finally, we also want to scale time t and express the equation in terms of dimensionless
time ⌧ . This last reformulation will further simplify the equation and allows us to interpret
and compare activity dynamics over time across various systems. The latter is possible due
to the usage of dimensionless time ⌧ to scale and compare the time evolution of di↵erent
systems relative to each other. Let us make the following substitution:

⌧ = µt. (11)

By substituting ⌧ for t in the term on the left hand side in Equation 10 we arrive at the
dimensionless dynamics equation:

dx
i

d⌧
= ��

µ
x
i

+
X

j

A
ij

x
jq

1 + x2

j

. (12)

Now, there is only one parameter in our dynamics equation, namely the ratio �/µ. This
is a dimensionless ratio of two rates: (i) The Activity Decay Rate �, which is the rate at
which a user loses activity, and (ii) the Peer Influence Growth Rate µ, which is the rate at
which a user gains activity due to the influence of a single neighbor.

The ratio between those two rates is the ratio of how much faster users lose activity
due to the decay of intrinsic activity (or interest) than they can gain due to positive peer
influence of a single neighbor. For example, a ratio of �/µ = 100 would mean that the users
intrinsically lose activity 100 times faster than they potentially can get back from one of
their neighbors. If we would set �/µ = 1, it would mean that users would lose activity as
fast as they can regain it from one of their peers. For a short description of all parameters
of the activity dynamics model see Table I.

2.2. Linear Stability Analysis

In general, Equation 12 is a coupled set of n (n being the number of nodes or users in
the network) non-linear di↵erential equations, for which, in a typical case, no closed form
solution can be found. Therefore, we turn our attention to the properties of so-called fixed
points. A fixed point x

⇤ represents all the values for x⇤
i

for which the system does not
change in time:

dx
i

d⌧
= ��

µ
x
i

+
X

j

A
ij

x
jq

1 + x2

j

= 0, 8i. (13)

Suppose that we are able to find a fixed point x

⇤ by solving Equation 13. One obvious
fixed point in our model is x

⇤ = 0, meaning that x⇤
i

has the same value for every i:
x⇤
i

= x⇤ = 0, representing a simple special case: a symmetric fixed point. We can easily
check that x⇤ = 0 is indeed a fixed point since f(x⇤) = g(x⇤) = 0, and this also gives
f(x⇤) +

P
j

A
ij

g(x⇤) = 0, 8i.
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We are investigating this specific fixed point, as it also has a particular interpretation
in our model. At this fixed point all users have zero activity, which means that they are
completely inactive and the system is in an inactive or “dead” state. If the system is in such
a state and no external incentives are provided, nothing will ever change and the system
will remain inactive indefinitely.
Typically, we are interested in the implications on the system if we provide a small enough

impulse to leave such a steady (inactive) state. In our context, the most interesting question
is if the system will move from an inactive state towards a state of lively activity or if it
will just revert to the inactive state. Technically, we are interested in the stability of the
fixed point. In particular, we want to know if the fixed point is attracting (meaning that
the system’s activity in the proximity of the fixed point will be attracted to it) or repelling
(meaning that the system’s activity close to the fixed point will be pushed away from it).
To answer this question we linearize the functions in the proximity of a fixed point. We

represent the value of x
i

close to the fixed point with x
i

= x⇤ + ✏
i

, where ✏
i

is su�ciently
small. To simplify the calculations, we concentrate on the case of a symmetric fixed point,
such as x⇤ = 0. Next, we perform a Taylor expansion about the fixed point and linearize by
neglecting the terms of second and higher orders. After simplification we obtain (for details
see e.g. Newman [2010]):

d✏
i

d⌧
= ��

µ
✏
i

+
X

j

A
ij

✏
j

, (14)

where ✏
i

is the displacement of x
i

from the fixed point x⇤.
We can also write Equation 14 in matrix form, which gives:

d✏

d⌧
= (��

µ
I +A)✏, (15)

where I is the identity matrix and A is the adjacency matrix.

Table I: Model and model parameters. The activity dynamics equation is in a dimen-
sionless form and scales over relative time ⌧ . All properties, as well as the single parameter
of the model, are briefly described under Properties and Parameters.

Equation Name
dxi
d⌧

= ��

µ

x
i

+
P

j

A
ij

xjp
1+x

2
j

Activity Dynamics Equation

Properties Name

� Activity Decay Rate

q Maximum Peer Activity Flow

a
c

Critical Activity Threshold

µ = q

ac
Peer Influence Growth Rate

⌧ Relative Time Scale

Parameter Name

�

µ

The ratio, describing how fast users intrin-
sically loses activity compared to how fast
they get it back from (one of) their neigh-
bors.
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We can solve the last equation by writing ✏ as a linear combination of eigenvectors v
r

of
the symmetric real matrix (�(�/µ)I +A):

✏(⌧) =
X

r

c
r

(⌧)v
r

. (16)

Equation 15 then becomes:
X

r

dc
r

d⌧
v

r

= (��

µ
I +A)

X

r

c
r

(⌧)v
r

=
X

r

c
r

(⌧)(��

µ
+ 

r

)v
r

, (17)

where 
r

are the eigenvalues of the graph adjacency matrixA. We also used the fact that the
matrix (�(�/µ)I+A) has the same eigenvectors as A, but with the eigenvalues ��/µ+

r

.
The solution of the last equation for the coe�cients of the linear combination is then:

dc
r

d⌧
= (��

µ
+ 

r

)c
r

(⌧) =) c
r

(⌧) = c
r

(t
0

)e(�
�
µ+r)⌧ . (18)

Now, the displacement from the fixed point will decay in time towards 0 if the exponents
for the coe�cients c

r

(⌧) are all negative. Thus, we arrive at the master stability equation
for the special case of a dynamical system that we defined as:

��

µ
+ 

r

< 0, 8r, (19)

Since the adjacency matrix has both positive and negative eigenvalues, a necessary stabil-
ity condition is �/µ > 0, which is satisfied by definition. Thus, we can rearrange Equation 19
and obtain the following inequality:


1

<
�

µ
. (20)

where 
1

is the largest positive eigenvalue of the graph adjacency matrix. Note that this
inequality separates the network structure (

1

) from the activity dynamics (�/µ).
If this stability condition is satisfied, the fixed point x⇤ = 0, in which there is no activity at

all (“inactive” system), represents a stable fixed point. This also means that small changes
in activity only cause the system to momentarily leave the (attracting) fixed point until it
becomes inactive again.

For illustration, we initialized Zachary’s Karate Club Network (cf. Figures 3(a) and 3(b))
with random activities between 0 and 0.1 per node and simulate activity with our model. If
the master stability equation holds (Figure 3(c)), activity converges towards zero. However,
when invalidating the master stability equation (Figure 3(d)), activity converges to a new
and permanently active fixed point.

In practice, additional system configurations are imaginable. Whenever the ratio is below

1

, the system becomes unstable leaving the inactive state. However, due to the special
form of the peer influence function, which saturates for large values of activity, the system
will converge towards another stable state of immanent activity (i.e., ratios for periods 1�5
of Figure 4).

Thus, if the system is in the state where 
1

> �/µ, we can think of three di↵erent

activity evolution scenarios, depending on the current levels of activity present in the
network:

(1) If the levels of activity are lower than the ones the network converges towards with the
new ratio, we will see an increase in activity (e.g., timespans 1 � 2 of Activity Increase

in Figure 4).
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(a) Zachary’s Karate Club Network (b) Adjacency Spectrum (1 = 6.726)
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(c) Activity Evolution �
µ > 1
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(λµ = 1 ,  ∆ τ = 0.001 ,  κ1 = 6.73)

(d) Activity Evolution �
µ < 1

Fig. 3: Illustrative example. Top Left (a): Visualization of Zachary’s Karate Club. The
size and color of a node represent random activity values between 0.0 and 0.1 of the cor-
responding nodes (bigger and darker equals higher values). Top Right (b): Eigenvalue
spectrum of Zachary’s Karate Club network. The highest eigenvalue is 6.726. Bottom (c

and d): Evolution of activity with random initial activities (averaged over 10 runs). Bot-

tom Left (c): Activity dynamics with parameters satisfying the master stability condition

1

< �/µ. Each line represents one node; all activities converge to the state of zero activ-
ity. Bottom Right (d): Invalidation of the master stability condition 

1

< �/µ, activity
converges towards a new and permanently active fixed point.

(2) If the new ratio lets the system converge towards lower levels of activity than currently
present, activity will decrease, even though 

1

> �/µ (e.g., see timespans 2� 3 or 4� 5
of Activity Variation and Activity Decrease of Figure 4).
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0
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15
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Changes in Activity over Time

4
6

8
λ

µ

Timespans of Simulation
Init 0−1 1−2 2−3 3−4 4−5 5−6

κ1

●

●

Changes of Ratio over Time
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Fig. 4: Coupled evolution of activity and �/µ. The top Figure depicts the evolution
of activity (y-axis) over time (x-axis; in months) for Zachary’s Karate Club network with
synthetically created (random) activities. The ratios, which correspond to the activity evo-
lutions over time in the top Figure, are depicted in the bottom Figure (same symbol and
color), with the y-axis representing the value of the ratio, while the di↵erent timespans
are depicted on the x-axis. As long as �/µ < 

1

the network converges towards a state
of immanent activity, yet decreases in activity are possible (see timespans 2 � 4 ofActivity
Variation sections in top and bottom). If �/µ > 

1

the network converges towards an
inactive state.

(3) Lastly, the levels of activity have already converged towards their fixed point and �/µ is
left unchanged, retaining the levels of activity from the past (e.g., see timespans 0� 1 of
Activity Increase in Figure 4).

If 
1

< �/µ holds, the system is stable and activity converges towards the attracting fixed
point at zero activity (see timespans 5� 6 of Activity Decrease in Figure 4).

Summary of system stability analysis. In order to permanently leave the stable state
of complete inactivity we are interested in making the system unstable. To be able to leave
the attracting force of the fixed point at zero activity we have the following two options:

(i) We provide (continuous) external impulses to the system, for example, in the form
of incentives for users to increase their activity, pushing the system far away from the
fixed point of no activity (and hope that it will be attracted by another fixed point where
activity is not zero).

(ii) We compromise the stability condition by either manipulating:
(a) the network structure (i.e., making 

1

larger) or
(b) the activity dynamics (i.e., making �/µ smaller).
Structurally, we can manipulate the size of 

1

by creating or removing links (and nodes)
in our network (for more information on how to manipulate 

1

see [Newman 2010]).
Dynamically, �/µ becomes smaller if either � becomes smaller, meaning that the intrinsic
user activity decays at a slower pace or µ becomes larger, meaning that people copy their
friends more and faster, or both.

2.3. Discussion on Parameter Evolution

At this time, we leave the investigation of the manipulation of the activity dynamics ratio
�/µ as well as the manipulation of the network structure to invalidate the master stability
equation open for future work. Nevertheless, before illustrating how our proposed activity
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Fig. 5: Parameter Evolution Scenarios. In a system with (at first) increasing overall
levels of activity and fixed values for q and � for all users, we expect a

c

to slowly increase
(see (a)), as individual contributions are indistinguishable due to a flood of newly added
content (activity). As a consequence, more posts and replies are required from all users to
exercise the same amount of peer influence—represented by increasing values for a

c

over
time. After a certain point in time, a

c

will reach a threshold and activity will start to
decrease, if not intervened by administrators. In a more realistic scenario (see (b)), again
with increasing levels of overall activity, users will—in addition to increasing values of a

c

—
start to lose interest in contributing to the system, represented by increasing values for �.
As a consequence, activity will decrease at a faster pace.

dynamics model can be applied to empirical datasets, we discuss potential system evolution
scenarios and their implications for activity.

Activity Decay Rate. Technically, if � increases, the ratio �/µ increases as well, resulting
in higher (faster) losses of activity per timespan. Once the system satisfies the master
stability equation (

1

< �/µ) it will inevitably become inactive. To be precise, the larger �
for a stable system, the faster activity will converge towards zero. Essentially, an increase
in � represents an increased intrinsic loss of activity for all users (e.g., due to a lack of
interest to contribute) while a decrease of � can be interpreted as an increase of interest
(more precisely, slower loss of interest) and thus higher levels of activity.

Evolution scenarios of Activity Decay Rate. We would expect to see an increase in � on
websites with low levels of user interaction and activity (i.e., meaning that individual con-
tributions are not valued, as no feedback is provided). On the other hand, websites that
engage with their users and provide steady updates (e.g., new content or functionality) will
likely see a consistent or even decreasing �. In general, practitioners can influence � by,
for example, providing incentives for users to contribute, such as badges, barn stars, likes,
reputation systems, or monetary incentives.

Peer Influence Growth Rate . With increasing values for µ the ratio �/µ decreases,
resulting either (i) in an overall increase in activity if the system is unstable (

1

> �/µ),
(ii) in prolonged timespans of activity before converging towards inactivity if the system is
stable (

1

< �/µ), (iii) or in an invalidation of the master stability equation if �/µ reaches
a tipping point where 

1

> �/µ.

The evolution of µ directly corresponds to the evolution of the Maximum Peer Activity

Flow and Critical Activity Threshold .

Maximum Peer Activity Flow . The parameter q defines the maximum amount of activity
(peer influence) that can traverse along the edges of the collaboration network per unit time.
If this parameter increases, µ = q/a

c

will increase as well; resulting in an overall increase in
activity. In contrast, reducing the value of q results in overall decreasing levels of activity.
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Evolution scenarios of Maximum Peer Activity Flow . In real-world systems, q is best inter-
preted as a proxy for the e�ciency of the user interface, describing how well information (or
influence) is transported (e.g., highlighted or visualized) across users. For example, prac-
titioners can influence the Maximum Peer Activity Flow by adding recommendations for
users to collaborate with or by optimizing the presentation of newly added/edited content.
Note that with increasing numbers of users and levels of activity it becomes increasingly
di�cult for practitioners to keep q at its current level, let alone positively influence the
parameter due to the vast amount of content and/or activity present in the system.

Critical Activity Threshold . The parameter a
c

represents a soft threshold, which defines
when users start to “e↵ectively notice” the actions of their peers and are, as a consequence,
“notably” influenced (see Figure 2(b)) by them. The larger a

c

, the more actions (i.e., posts
or replies) are required by users to positively influence their peers to copy their actions and
increase their activity levels (see Figure 5).

Evolution scenarios of Critical Activity Threshold . In practice, we would expect to see an
increasing a

c

with an increasing number of active users and levels of activity. For example,
in a system with low activity and a small number of users, each action by a particular user
will be noticed immediately by all others—meaning that the level of a

c

is low. However, with
increasing numbers of users and an increase in activity, users have to increase their number
of posts and replies to be noticed by their peers. Hence, the more active users are present
in a system, the harder it becomes for users to specifically notice each contribution of their
peers individually. In a worst case, users are confronted with an activity overload that might
even result in decreasing levels of (positive) peer influence. In particular, an initial increase
in activity likely leads to an increase in a

c

, which in turn decreases activity in the system.
Thus, evolution of a

c

represents a negative feedback loop in the system. In contrast to q,
which serves as a proxy for the user-interface, a

c

represents an intrinsic parameter of the
users of a system. Administrators of such networks and websites can influence a

c

by either
influencing q (e.g., by adjusting the user interface to better promote each individual action
taken by the peers of a user) or by actively avoiding and counteracting the activity overflow
by filtering and reducing the amount of new content that is displayed at once.

For example, the mechanisms of how Facebook displays posts in its “News Feed” can be
seen as a measure to filter and limit newly added content; actively avoiding information or
activity overloads while maximizing the (peer) influence of each individual contribution.

Summary of evolution scenarios. If activity increases over time and no adaptations
to the system are implemented, activity will inevitably decrease, due to a larger Critical

Activity Threshold (see Figure 5). To counteract this development, website administrator
could either try to manipulate Activity Decay Rate—an intrinsic property that varies per
user—or optimize the user interface, and thus manipulate Maximum Peer Activity Flow .

3. EMPIRICAL ILLUSTRATION

We are now interested in modeling and simulating activity dynamics for empirical datasets.
In particular, we investigate activity dynamics for an array of di↵erent websites, consisting
of instances of the StackExchange1 network as well as multiple Semantic MediaWikis2.

First, we characterize the investigated datasets and outline our methods for the empir-
ical estimation of the required parameters (see Table I). We then fit our model to the
collaboration networks and present the results of the activity dynamics simulation.

1http://www.stackexchange.org/sites
2http://www.semantic-mediawiki.org
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Fig. 6: Degree Distribution of Empirical Collaboration Networks. Visualization of
the degree distribution of all investigated collaboration networks. The top row (a to d)

depicts the di↵erent StackExchange collaboration networks, while the bottom row (e to

h) shows the collaboration network visualizations for the di↵erent Semantic MediaWiki
instances. The majority of users, across all collaboration networks, exhibits between 0 and
10 collaboration edges.

3.1. Datasets

We selected a total of four di↵erently sized instances from the StackExchange network as well
as four di↵erent Semantic MediaWiki instances to model activity dynamics. In particular,
we concentrate our e↵orts on the History StackExchange3 (HSE), which is the smallest
of the StackExchange datasets and allows users to discuss topics and questions related
to history and historical events. The Bitcoin StackExchange4 (BSE) as well as the The
English Language & Usage StackExchange5 (ESE) represent two medium-sized websites and
are platforms for asking and discussing questions related to everything related to mining,
buying and selling of bitcoins and the English language respectively. On the Mathematics
StackExchange6 (MATHSE) website, which also represents our largest dataset, users can
ask and discuss mathematics related questions and topics.
We further investigate activity dynamics for the Beachapedia Wiki7 (BP), represent-

ing the smallest dataset in our activity dynamics analysis, striving to create a structured
knowledge base for a variety of topics on beaches in the United States. The medium-sized
german Nobbz Wiki8 (NZ) provides a structured knowledge base and discussion platform

3http://history.stackexchange.com
4http://bitcoin.stackexchange.com
5http://english.stackexchange.com
6http://mathematics.stackexchange.com
7http://www.beachapedia.org
8http://nobbz.de/wiki
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for the online game “Die Verdammten”9. The second largest dataset, the NeuroLex Wiki10

(NLX), represents a large and semantically enriched lexicon on terms and topics related to
neuroscience. Our largest dataset is the 15Mpedia Wiki11 (15MW)—a Spanish Semantic
MediaWiki instance that discusses a wide variety of topics related to Spain and its di↵erent
areas and regions.

In general, the investigated datasets are very diverse in their characteristics, for example,
the number of active users ranges from 35, 476 in MATHSE to a total of 16 in BP. For the
analyses conducted in this paper we focus on the last 52 weeks of each dataset. For more
detailed information see Table II. The di↵erent degree distributions for all collaboration
networks are highly heterogeneous (cf. Figure 6). For all investigated datasets, the majority
of users exhibit between 0 and 10 collaboration edges. However, in all datasets there are a
few users with a large number of collaboration edges.

From each of these datasets we extracted a collaboration network for the tasks of fitting
the model and simulating activity dynamics. Hence, we first parsed the change-logs of all
datasets. Each user, who has contributed at least one question, answer or comment for
the StackExchange datasets, or created or edited an article for the Semantic MediaWikis
is represented as a node in the corresponding collaboration network. Edges between users
represent collaboration and are undirected. For the StackExchange datasets, we defined
collaboration as either posting an answer to a question or posting a comment on the initial
question or an answer. For the Semantic MediaWiki instances, we have created an edge
between users who (chronologically and) successively changed the same article (cf. Figure 7).
Edges with the same source and target user have been removed in all datasets.

Further, users with zero collaboration edges are initialized analogously to all other users
and are not specifically filtered from our datasets. However, due to missing positive peer
influence, activity will inevitably—as long as �/µ > 0—converge towards zero for these
users.

Note that the presented approach for creating collaboration networks represents just one
of many di↵erent possibilities to create such networks and is analogous to (undirected) co-
authorship networks as presented in Newman [2001]; Barabâsi et al. [2002]. Given that the
created collaboration networks are based on interactions between users, we assume similar
characteristics to social networks, particularly with regards to potential peer influence [Aral
et al. 2009].

9http://www.dieverdammten.de/
10http://neurolex.org/
11http://wiki.15m.cc/wiki/Portada

Table II: Dataset statistics. Note that all datasets di↵er in the number of users, collabo-
ration edges and activity. Users refers to the number of unique users that have contributed
more than one post or reply to the corresponding datasets within our observation periods.
Posts represent newly created questions in the case of the StackExchange network and newly
created articles in the case of the Semantic MediaWiki datasets. Replies are either com-
ments or answers for all StackExchange datasets and edits of existing articles for Semantic
MediaWikis. 

1

denotes the largest eigenvalue of the corresponding collaboration network.
For our experiments we limited our observation periods to the last 52 + 3 weeks of each
dataset.

Dataset HSE BSE ESE MATHSE BP NZ NLX 15MW

Users 682 1, 299 7, 893 35, 476 16 36 112 394
Edges 5, 179 5, 528 83, 457 477, 133 38 125 383 772
1 54.33 43.88 162.04 303.58 6.71 11.46 18.4 19.97

Posts & Replies 12, 496 12, 295 151, 028 986, 996 2, 718 603 33, 792 102, 521
Weeks 52 + 3 52 + 3 52 + 3 52 + 3 52 + 3 52 + 3 52 + 3 52 + 3
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Fig. 7: Collaboration Network Construction. This plot depicts the di↵erent elements
of the StackExchange and Semantic MediaWiki datasets that have been classified as posts
and replies (cf. Table II) as well as the edges that have been drawn between certain entities
and change-actions and represent collaboration in our collaboration networks.

3.2. Parameter Estimation with Least-Squares

To estimate �/µ for (preprocessed) empirical datasets we resort to an output-error estima-
tion method. First, we formulate the estimation of the model parameter as an optimization
problem. As objective function we use a well-known least-squares cost function. Second, we
solve the optimization problem numerically, using the method of gradient descent in combi-
nation with Newton’s method to speed up the calculations. Finally (as a proof of concept),
we evaluate the accuracy of the ratio estimate by calculating prediction errors on unseen
data. Next, we describe these estimation steps in more details.

Preprocessing. First, we aggregate all activities per user per day and apply a rolling mean
of 7 days to smoothen and reduce strong fluctuations in activity, which are likely caused
by external influences. Second, we further aggregate the smoothed activities per user and
per (calendar) week. For an additional noise reduction in our datasets we remove all users
that have contributed less than one post or reply in the smoothened dataset during our
observation period, as well as the first and last week of our datasets, if they contain less
than 7 days of activity data. Finally, since we only want to illustrate the practical application
of our model on the empirical data we extract the last 52+3 to weeks from all our datasets.
Note that the 3 additional weeks are required to calculate a ratio for the simulation of
activity for the first week.

Formulating estimation as an optimization problem. Depending on a particular ap-
plication of the model we may need to introduce a suitable objective function. For example,
we may be interested in applying our model to analyze and simulate the aggregated levels
of activity in a system. In other words, we are interested in the overall activity level in
a system, rather than in the particular activity distribution over the users (see below for
another example involving user activity levels). Hence, we formulate the objective function
(see Equation 21) as a least squares cost function, which calculates the error of the sum of
activity over multiple data points over a certain period of time T :
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where x
i

(k) is the empirically observed activity of user i at time k, x̂
i

(k) is the estimated
activity for user i at time k, and n is the total number of users as before.

To calculate the estimates x̂
i

(k) we numerically integrate the di↵erential equations from
our model by applying Euler’s method for solving di↵erential equations computationally.
Thus, we approximate the time evolution of x̂

i

between all time steps k and k+1 (for each
of these steps we set the total time to ⌧) by iterating:
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where we set x̂
i,t=0

(k) = x̂
i

(k), 8i, k and use the current estimate for �/µ to perform
calculations. The final equation for x̂

i
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The local approximation error for the Euler’s method is of the order O(�⌧2) and the
global of the order O(�⌧). To perform integration between steps k and k + 1 we need to
iterate for ⌧/�⌧ steps, where �⌧ needs to be chosen with care. In general, if we set �⌧ too
high—meaning that the calculations are less computationally intensive, as we have to run
a smaller number of iterations—the accuracy of our simulation (including the estimation of
the ratio) will decline, as the potential error per iteration due to our approximations becomes
higher. This error can become so large that it could potentially lead to numerical instability,
meaning that the overall activity in a system can become negative, which might result in
activity to diverge towards ±1. With certain combinations of the network structure, �⌧
and the calculated ratios, activity can become negative without diverging, oscillating around
the fixed point of zero activity until convergence. In contrast, if we set �⌧ too low we end
up with a very precise simulation, although the time necessary to compute the simulation
will be much higher, as a much larger number of iterations will have to be executed.

Numerical solution of the optimization problem. We solve the optimization problem
numerically using the method of gradient descent. The first derivative of the objective
function (Equation 21) defines the update rule or gradient, which directs if and to what
extent we have to increase or decrease �/µ to minimize the error of the sum of activities
over all data points during T .

Once we calculate the first derivative with the current values of estimated activities we
update the ratio by multiplying the derivative with the learning rate ⌘. Thus, the complete
procedure is as follows. First, we initialize our estimation by using 

1

for the first simu-
lation. Second, we estimate the activities and calculate the gradient with these estimates.
Third, we calculate the error between our simulated and empirical values, and adapt the
ratio according to the corresponding update function and step size ⌘. Fourth, we repeat this
process until the calculated update for the ratio is smaller than a given convergence crite-
rion (e.g., 10�12) or if we reach a total of 20, 000 iterations without reaching convergence.
Additionally, we have also implemented Newton’s method, which in our cases substantially
reduces the computation time. In all our experiments we set T to four weeks, meaning that
we optimize the objective function by calculating the optimal ratio over a span of four data
points (weeks).
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(c) Variable Activity

Fig. 8: Illustrations with Synthetic Data. The plots depict the results of the activity
dynamics simulations for Zachary’s Karate Club network with synthetic activity values (left
y-axes) and the corresponding ratios (right y-axes). The black solid lines with x markers
represent the simulated activity over t (in weeks; x-axes). The solid gray lines with circles
represent synthetic activities; the gray dotted lines with diamonds represent the ratios
corresponding to the simulated activities. With increasing and decreasing activities, the
ratios become smaller (see (a)) and larger (see (b)). When setting activity randomly (see
(c)) the ratio adjusts analogously.

Evaluation of the parameter estimates. We evaluate the accuracy of the estimated
parameters by cross-validation (leave-one-out method). In particular, we use the estimated
ratios over 4 weeks to simulate activity for the succeeding week. For example, we calculate
the optimal �/µ (according to our objective function) for weeks 1 – 4 and predict activity
for week 5. Next, we use the empirical data of weeks 2 – 5 to calculate the ratio to predict
activity for week 6. Hence, we calculate a total of 52 ratios to simulate activity for a total
of 52 weeks.

As depicted in Figure 8, we have created three synthetic scenarios to test and illustrate
the mechanisms of the Activity Dynamics Model. First, we estimate �/µ (right y-axes; gray
dotted lines with diamonds) for the three scenarios with synthetically created increasing,
decreasing and variable or random activities (left y-axes; gray solid lines with circles) over
10+3 weeks (x-axes). In all three scenarios we use Zachary’s Karate Club as the underlying
collaboration network. Due to our parameter estimation process the simulated levels of
activity (left y-axes; black solid lines with x markers) exhibit a small lag when activity
steadily moves into one direction (i.e., increases or decreases). On the other hand, small
fluctuations (see weeks 6 – 9 in Figure 8(c)) are mitigated. The ratios (right y-axes), which
correspond to the simulated levels of activity in the same week, are depicted as well.

Discussion on parameter estimation method. To validate the correctness of our im-
plementation of the method of least squares, we have simulated activity for datasets with a
preset ratio (and random weights for initialization) for 3 weeks. We then used the random
activity initialization values, as well as the activity values for each of the 3 weeks as input
for the calculation of the ratio with the method of least squares. Using this approach, we
were able to estimate previously set ratios with negligibly small errors. When adding noise
to the simulated activity values, the obtained ratios were less accurate accordingly.
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Note that the estimation and validation method that we apply is only one of many possible
methods. In this paper, we want to illustrate the general applicability of our method as well
as its potential to gather new insights into the intricate dynamics of activity in online
collaboration networks. We measure the accuracy of the prediction only as a general proof
of concept of our model and leave further investigations of the predictive power of our
method open for the future work. Following up on this notion, we now shortly discuss some
alternative approaches for formulating the objective function and their implications.

Alternative objective functions. To demonstrate the versatility of our model—if we are
interested in answering questions about the distribution of the activities over users—we
may change the formulation of the objective function to calculate ratios that minimize the
error of activity per user and per data point (see Equation 24). Note that when optimizing
towards aggregated levels of activity, we obtain ratios that characterize the systems. In
contrast, with the adapted objective function, we are interested in learning more about the
users of such systems. The alternative objective function may be defined as follows:

J(
�

µ
) =

1

T

T�1X

k=0

[x(k + 1)� x̂(k + 1)]2, (24)

where x and x̂ are now n-dimensional vectors storing the activities of all n users. Thus,
this objective function represents the sum of squared errors calculated for each of the n
users of the corresponding systems over a total of T data points.

We have estimated �/µ and simulated activity for HSE using this objective function.
In contrast to the aggregated levels of activity, we obtain a more accurate distribution of
activities across all users, as was intended. However, each of the 4 data points in T now
corresponds to a vector of n users, as opposed to a single value (the aggregated activities),
resulting in either much higher computation times, a larger error for the prediction tasks
or both.

Additionally, to tackle the prediction problem and to avoid overfitting we may introduce
a regularization term to the objective function. For example, we might be interested in
keeping the ratio or the di↵erence between the ratio and 

1

small. In the latter case we
would add a term such as �(

1

� �/µ)2 to our objective function, where � represents the
strength of regularization.

We leave a detailed analysis and comparison of di↵erent objective functions open for
future work. The ratios calculated to minimize the error for aggregated activity levels exhibit
higher accuracy in our simulations (in terms of overall activity per month). The trade-o↵
for a more accurate distribution of activities over users with the changed objective function
are worse results for the simulation of activity, as not only the aggregated activity levels
are considered, but the vector of activities of all user in our datasets over multiple points
in time. However, these ratios provide a better overall correlation between simulated and
empirical activities per contributor of our system.

3.3. Illustration on Empirical Datasets

After calculating �/µ and setting �⌧ we simulate activity in our collaboration networks.
Due to our chosen approximations, the main goal of the presented illustration is not to
predict activity in collaboration networks. Rather, we are interested in demonstrating that
our assumptions regarding the Activity Decay Rate and the Peer Influence Growth Rate

hold and allow us to simulate trends in activity dynamics for given and real values. Further,
by modeling and simulating activity dynamics for empirical datasets we not only deepen
our understanding of the model but we also—depending on the values of the parameters—
potentially obtain new insights into the systems under investigation.
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Fig. 9: Results for the activity dynamics simulation. The plot depicts the results of
our activity dynamics simulation for the StackExchange datasets (top row) and Semantic
MediaWiki instances (bottom row). The solid gray lines with circles represent the empir-
ical (observed) activity over t (in weeks; x-axes), while the solid black lines represent the
simulated activity dynamics (y-axes). In all of our analyzed datasets, the simulated activity
dynamics exhibit a notable resemblance to the empirical activity.

Figure 9 depicts the results of the activity dynamics simulation. The root mean-squared
errors (RMSEs) of the simulations are listed in Table III.

Overall, the results gathered from the activity dynamics simulation exhibit a notable
resemblance to the real activities of the corresponding datasets. Due to the chosen ap-
proximations and simplifications when estimating �/µ for our model (i.e., static network
structure and average model parameters over weeks and users), the simulated activity is
naturally limited in its accuracy. These limitations are particularly visible whenever there
are large and sudden increases of activity in the collaboration networks. Note that �/µ will

Table III: RMSE. The table depicts root mean-squared errors (RMSE) of our activity
dynamics simulation per user and week for all datasets. Our simulation yields a small RMSE
for all StackExchange datasets. RMSE for the Semantic MediaWiki datasets is slightly
higher, which is likely due to the lower number of active users (listed in the Users column).

Dataset HSE BSE ESE MATHSE BP NZ NLX 15MW

Activity 12, 496 12, 295 151, 028 986, 996 2, 718 603 33, 792 102, 521
Users 682 1, 299 7, 893 35, 476 16 36 112 394
RMSE 0.076 0.031 0.029 0.030 1.755 0.274 4.397 4.043
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Fig. 10: Evolution of ratios �/µ. The evolution of the ratios �/µ (y-axes) over ⌧ (in
weeks; x-axes) for the StackExchange datasets (top row) and for the Semantic MediaWiki
instances (bottom row). The smaller the ratio, the higher the levels of activity in Figure 9.
Small variances in �/µ over time indicate that activities of the systems are less influenced
by the activity of single individuals than they are by peer influence.

only be higher than 
1

if activity in our datasets is either zero or the relative di↵erence in
activity between two months is extremely high, which is never the case for our smoothed
empirical datasets.

Further, the assumption of a fixed network structure of our investigated collaboration
networks also (negatively) influences the obtained results of our simulation. For example,
it is possible for our simulation to yield higher increases in activity (e.g., Figure 9(b)), as
users might be influenced by peers, who would join the collaboration network only at a later
point in time.

4. SYSTEM MASS AND ACTIVITY MOMENTUM

We can further analyze the obtained ratios and parameters of our activity dynamics sim-
ulation to broaden our understanding of the collaboration networks under investigation.
Figure 10 depicts the value of the calculated ratios �/µ (y-axis) for each week (x-axis).
If the ratio is higher than 

1

(denoted in the title of each Figure), our master stability
equation holds and the system converges towards zero activity (over time). The amount of
activity that is lost per iteration—and hence the speed of activity loss—is proportional to
the value of the ratio and the activity already present in the network. In general, a higher
ratio results in a higher and faster loss of activity.

If the ratio is smaller than 
1

, the master stability equation has been invalidated and the
system will converge towards a new fixed point of immanent activity (cf. Section 2.2). If this
is the case, we can observe one of three potential behaviors, which are triggered depending
on the amount of activity already present in the network and the current ratio:
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(i) An increase in activity if the new fixed point, corresponding to the new ratio, is of
higher overall activity than the activity already present in the collaboration network (see
⌧ = 20 � 30 in Figures 9(d) and 10(d)). This situation emerges whenever we invalidate
the master stability equation from a previously stable fixed point or if the system is
already stable in a situation when the new ratio is smaller than the last estimated ratio.

(ii) A decrease in activity if the new fixed point is of lower overall activity than the
activity already present in the collaboration network (see ⌧ 3 � 7 in Figures 9(b) and
10(b)). Again this may occur in two specific situations. First, if the ratio increases, so
that the master stability equation is now satisfied and the system has been previously
in an unstable state. Second, if the system is in an unstable state but the ratio increases
slightly without satisfying the stability equation.

(iii) No change in activity if the new fixed point corresponding to the new ratio is of the
same overall activity than the activity already present in the collaboration network (see
⌧ 20� 30 in Figures 9(b) and 10(b)).

System Mass. We can now use the obtained ratios to characterize the collaboration net-
works and quantify their robustness in terms of their activity dynamics. Robust systems
are systems with lively and high levels of activity, which are able to keep that activity even
in the cases of small unfavorable changes in the dynamical parameters. Less robust systems
are systems that lose their activity very quickly as a consequence of even small changes
in the ratio. Thus, we calculate the standard deviation over all ratios �

�/µ

over time and
normalize it over 

1

—to account for the size of the collaboration networks—and refer to it
as ⇢—the normalized standard deviation of the ratio �/µ (see Equation 25).

⇢ =
�
�/µ


1

(25)

The normalized standard deviation is a measure of system sensitivity and its inverse (1/⇢)
represents a measure of system stability or inertia to changes in activity. Analogously to
mass in classical mechanics—which defines the inertia or resistance of being accelerated or
decelerated for an object by a given force—we call the quantity 1/⇢ the System Mass. We
denote this quantity with m

s

with the subscript s to distinguish it from the number of links
m in a collaboration network (see Table IV). In systems with a large System Mass it is more
di�cult to induce changes in activity. In particular, this means that it is more di�cult to
reduce activity in a consistently active system (due to the small standard deviations of �/µ),
as well as it is di�cult to jump-start the same system if activity levels were consistently
low in the past (again, due to small standard deviations of �/µ).

Activity Momentum. After calculating the System Mass m
s

, we are now interested
(again analogously to classical mechanics) in calculating the Activity Momentum p for our
collaboration networks (see Equation 26).

p = m
s

a (26)

For activity we take (i) the average activity (posts and replies) per week and (ii) the activity
in the last month of our observation periods (cf. Table IV) and calculate (i) the average
and (ii) the current momentum.

The higher the Activity Momentum of a collaboration network, the more force is needed
to “stop” (make it inactive) the system. Hence, the higher the momentum, the more robust
a given network. In particular, if a (su�ciently) small number of users would suddenly stop
contributing to a collaboration network that exhibits a very large Activity Momentum p,
activity in the overall network would be minimally influenced. On the other hand, if the same
number of users would stop contributing to a collaboration network with a (significantly)
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smaller Activity Momentum p, chances are that their actions (or lack thereof) will have a
notable influence on the overall trends in activity dynamics of the system. In particular,
there are three factors that influence the Activity Momentum of collaboration networks:

(i) The standard deviation of �/µ. If the ratio is very stable and does not frequently oscil-
late, the standard deviation and hence the normalized standard deviation will be very
small. This also means that activity, as well as increases and decreases thereof, is equally
distributed across ⌧ and is not (frequently) exercised in bursts.

(ii) The largest eigenvalue 
1

. Larger and denser collaboration networks exhibit a larger
highest eigenvalue 

1

. As ⇢ is the normalized variance of the ratios over 
1

, the largest
eigenvalue will directly influence ⇢. The notion of normalizing ⇢ over 

1

follows the
intuition that that large collaboration networks are less likely to exhibit sudden changes
in activity than smaller ones.

(iii) The activity. The larger the average activity (posts and replies) per month, the higher
the Activity Momentum of a collaboration network, and hence the higher the force that is
needed to render the collaboration network inactive. Analogously, networks with a small
Activity Momentum require less force to be influenced (i.e., to either speed up/increase
or slow down/decrease activity).

Hence, we can use the calculated Activity Momentum p as an indicator of the activity level
as well as the tendency of a system to stay at that activity level in the future. For example,
MATHSE exhibits the most robust collaboration network of our datasets regarding changes
in activity, with an Activity Momentum of order 106 (average per week and last month).
ESE and 15MW both exhibit similar average Activity Momenti of orders 104. However,
when looking at the Activity Momenti of the last months, ESE is roughly four times as
hard to stop as 15MW.

In contrast, HSE and BSE exhibits very similar activity levels for last month, however
the corresponding Activity Momentum of HSE is twice the one of BSE, indicating that half
the force is needed to render BSE inactive than it would be needed to render HSE inactive.
The other datasets follow analogously.

On the other hand, BP exhibits a high value for System Mass and a very low corresponding
Activity Momentum, indicating that it will be very di�cult to to accelerate or jump-start
the system with regards to activity.

Table IV: System Mass and Activity Momentum. The table depicts the results for the
activity momentum analysis. ⇢ is the standard deviation of the calculated ratios normalized
over 

1

. System Mass is represented by 1/⇢ and Activity Momentum represents System
Mass multiplied with Activity. Activity depicts the average activity per week as well as the
value for the last observed months in brackets. Activity Momentum follows analogously.
MATHSE and ESE exhibit the largest average and current Activity Momenti, followed by
15MW and NLX. Even though 15MW exhibits a System Mass similar to HSE and NZ, its
Activity Momentum is much larger.

Dataset Activity (last month) ⇢ System Mass Activity Momentum (last month)

MATHSE 19, 255 (70, 130) 0.0115 86.65 1, 674, 415 (6, 076, 765)
ESE 2, 952 (13, 751) 0.0344 29.07 85, 815 (399, 742)
BSE 246 (782) 0.0762 13.12 3, 228 (10, 260)
HSE 248 (1, 110) 0.0554 18.10 4, 489 (20, 091)

15MW 1, 999 (4, 702) 0.0506 19.76 39, 500 (92, 912)
NLX 668 (1, 131) 0.0532 18.80 12.558 (21, 263)
NZ 12 (270) 0.0802 12.67 152 (3, 421)
BP 54 (228) 0.0547 18.28 987 (4, 168)
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5. RELATED WORK

The work presented in this paper was inspired by and builds upon work presented in the
areas of critical mass theory and dynamical systems on networks.

5.1. Critical Mass Theory

In 1985 and 1988, Oliver et al. [1985]; Oliver and Marwell [1988]; Marwell et al. [1988] have
discussed and analyzed the concept of critical mass theory by introducing so called produc-
tion functions to characterize decisions made by groups or small collectives. Fundamentally,
these production functions represent the link between individual benefits and benefits for
the group.
They argue that one very important aspect of critical mass is the natural limitation of

collective goods for groups such as housing, food, fuel or oil. Hence, the capacity of users
(and thus critical mass) for such a group or system is naturally limited by the corresponding
resource. However, collective (digital) goods are not (or only artificially) limited for online
communities; theoretically allowing for an infinite increase in users and interest. Without
users motivated to contribute, interest will decrease and critical mass will lose momentum
and ultimately decelerate until all interest vanishes. In their work they identified multiple
di↵erent types of production functions, with the most important ones being: Accelerating,
decelerating and linear functions. The idea behind accelerating production functions is that
each contribution is worth more than its preceding one. In a decelerating production function
the opposite would be the case, resulting in each succeeding contribution to be worth less
than the preceding one, while contributions to linearly growing functions are always worth
the same. Until today it is still mostly unclear what these production functions look like
for online communities (e.g., StackOverflow) and online production systems (e.g., Semantic
MediaWikis).
Depending on the investigated or desired point of view, di↵erent characteristics of these

communities and online production systems can be used as basis for calculating produc-
tion functions. The analysis of Oliver et al. [1985] also highlights that di↵erent production
functions can lead to very di↵erent outcomes in similar situations. For example, given an
accelerating production function, users who contribute to a system are likely to find their
potential contribution “profitable”, as each subsequent contribution increases the value of
their own contribution. Naturally, this increases the incentive to make larger contributions
to begin with. Given a deceleration production function, users would not immediately see
the benefit of large contributions, given that each subsequent contribution is increasing the
overall value less, while more e↵ort, in the form of larger contributions, is needed to turn a
decelerating production function into an accelerating one.
One approximation for critical mass by Solomon and Wash [2014] involved the inves-

tigation of the number of changes – as activity – and number of users – as growth of a
community – for calculating production functions for WikiProjects. The authors argue that
activity in online production systems, after certain amounts of time, is the best indica-
tor of a self-sustaining system. In this work, we have extended the analysis presented by
Solomon and Wash and specifically define the point of when an online system has reached
critical mass and has become self-sustaining in terms of its activity dynamics. Walk and
Strohmaier [2014] recently conducted a similar analysis to characterize critical mass for
Semantic MediaWikis.
Raban et al. [2010] investigated factors that allow for a prediction of survival rates for

IRC channels and identified the production function of these chat channels regarding the
number of unique users versus the number of messages posted at certain times, as the best
predictor.
Cheng and Bernstein [2014] have analyzed concepts of activation thresholds, which re-

semble features that, when achieved, can help to reach and sustain self-sustainability. They
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created an online platform that allow groups to pitch ideas, which only will be activated if
enough people commit to it.

With regards to activity, Suh et al. [2009] have shown that contributions to Wikipedia
are slowing down, which is likely a direct consequence of the increase in required coordi-
nation activities, as well as comprehensive contribution guidelines which discourage posts
by users. Kittur and Kraut [Kittur and Kraut 2008] have demonstrated that when reduc-
ing the overhead for editors—e↵ectively minimizing the e↵orts necessary to contribute to
Wikipedia—can help to increase the number of contributions and article quality. Similarly,
Anderson et al. [2012] investigated the value and development of contributions to the ques-
tion answering portal StackOverflow. In contrast, Yang et al. [2014] have investigated the
evolution of two di↵erent types of users in StackOverflow, namely sparrows (very active
users) and owls (experts) in the discussed topics, and could identify various di↵erences
between the two user-groups.

We use the notion of critical mass to define the barrier, that has to be overcome, for
collaboration networks to become self-sustaining in terms of activity.

5.2. Dynamical Systems on Networks

Dynamical systems in a non-network context are a well-studied scientific and engineering
field. Generally, a dynamical system is any system that changes in time, whose behavior
is determined by some specific rules or (di↵erential) equations over a set of quantifiable
variables. We distinguish between continuous and discrete as well as deterministic and
stochastic systems. Strogatz [1994] and Barrat et al. [2008] provide excellent introductions
and analyses of dynamical systems.

Di↵erent social and economic processes, which take place both o✏ine and online, have
been modeled with the use of dynamical systems. In the context of the Web, the primary
focus of dynamical systems was set on analyzing and understanding the di↵usion of infor-
mation in online social networks [Leskovec et al. 2007, 2009; Myers et al. 2012; Vespignani
2012], including the analysis of online memes and viral marketing.

On the other hand, the Bass Model [Bass 1976] describes how novel products are accepted
and adopted in a network and has seen a wide variety of applications in di↵erent fields of
research and also for practical use. The model consists of two parameters, the propensity
for innovation and the propensity for imitation. A product will be successfully accepted and
adopted by the community, depending in the ratio between these two parameters.

Acerbi et al. [2012] investigated factors that determine how social traits propagate within
a specific popularity. Iribarren and Moro [2009] conducted a viral email experiment, allow-
ing them to track the di↵usion of information in a social network. They showed that due
to heterogeneity in human activity, the most common and simple growth equation from
epidemic models is not suitable to model information di↵usion in social networks.

Recently, in the context of activity dynamics, Ribeiro [2014] conducted an analysis of the
daily number of active users that visit specific websites, fitting a model that allows to predict
if a website has reached self-sustainability, defined by the shape of the curve of the daily
number of active users over time. He uses two constants ↵ and �, where ↵ represents the
constant rate of active members influencing inactive members to become active. � describes
the rate of an active member spontaneously becoming inactive. Whenever �/↵ � 1 a website
is unsustainable and without intervention the daily number of active users will converge to
zero. If �/↵ < 1 and the number of daily active users is initially higher than the asymptotic
one, a website is categorized as self-sustaining.

The model presented in this paper to simulate activity dynamics heavily relies on the
concept of dynamical systems on networks. We strongly believe that by modeling and un-
derstanding activity dynamics, we will gain a better understanding of the processes involved
in and around the concept of peer influence in collaboration networks. Other areas of ap-
plication for dynamical systems on networks are the modeling and simulation of diseases
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in the form of epidemic models, and opinions or traits of a person, also known as opinion

dynamics.

5.2.1. Epidemic Models. Modeling the outbreak of diseases can be seen as a special case of
dynamical systems. At first, epidemic models dealt with the spreading of diseases in social
(real life) networks [May and Anderson 1984; Hethcote 1978; Anderson and May 1991;
Bolker and Grenfell 1993, 1995; Lloyd and May 1996; Keeling and Rohani 2002; Ferguson
et al. 2003], ignoring the underlying network aspect, simulating contractions and outbreaks
via random encounters of the whole population under investigation. For an exhaustive survey
of epidemic models refer to Pastor-Satorras et al. [2014].
Henceforth, these models have been extended to include the structure and other aspects

of the underlying networks [Rvachev and Longini 1985; Ferguson et al. 2003; Hufnagel et al.
2004; Longini et al. 2005; Ferguson et al. 2005; Colizza et al. 2006], limiting the spread
and outbreaks according to di↵erent factors. Further, epidemic models were also utilized
to simulate the spread for a plethora of properties in di↵erent kinds of networks, such as
viruses spreading in computer networks [Kephart et al. 1993, 1997; Pastor-Satorras and
Vespignani 2001b; Aron et al. 2002; Pastor-Satorras and Vespignani 2007] and information
propagation (e.g., memes) [Leskovec et al. 2007] among others.
In general, epidemic models are based on the intuition that a disease propagates through

a social network with a given infection rate, defining the probability that a neighbor of
an already infected node contracts the disease. Di↵erent models have been developed and
analyzed to simulate epidemic outbreaks in a population or network [Bailey et al. 1975;
Anderson and May 1991; Hethcote 2000; Newman 2010], which can only transfer on contact.
Typically, such an outbreak is modeled using a small number of possible states for each
node and a fixed probability of contraction (e.g., �, �), which defines the probability or
“threshold” that has to be reached for a node to change to a di↵erent state. For example,
the SI model consists of only two states – susceptible and infected – and one probability
parameter �, that determines when the transition from susceptible to infected is initiated.
Note that transitions in the SI model can only occur from susceptible to infected while
already infected nodes remain infected indefinitely. As the infection rate is relative to the
population under investigation, epidemic simulations with a small number of originally
infected hosts usually start-o↵ by slowly contracting the disease until exponential growth
is reached. Once the majority of the population carries the disease, the infection process
slows down again until the whole population is infected.
A more sophisticated extension to the SI model is the SIR model [Anderson and May

1991; Murray 2002], which additionally introduces the recovered (or removed) state as well
as an additional parameter � to model the transition from infected to recovered. Again,
transitions only occur from susceptible to infected to recovered. As the name suggests,
this newly introduced state allows nodes to become immune to the disease and will not
be infected in the future, nor be able to infect other nodes. Other models for simulating
epidemic outbreaks are the SIS and SIRS models, where the population can recover but does
not become immune (SIS) or stays immune but still has a chance to become susceptible for
infection again (SIRS) [Britton 2010; Dietz 1967].
Since their introduction, epidemic models have seen a wide array of application. For

example, to analyze how computer viruses spread [Kephart and White 1991, 1993; Newman
et al. 2002] or the study of epidemics in complex (scale-free, power-law) networks [Pastor-
Satorras and Vespignani 2001b,a, 2002; Moreno et al. 2002].
Among others Wang et al. [2003] as well as Ganesh et al. [2005] demonstrated the im-

portance of the networks spectra (eigenvalues and eigenvectors of the network adjacency
matrix) for epidemic and dynamical network models [Chung et al. 2003a,b]. We show a
similar dependency of activity dynamics on eigenvalues in this paper in Section 2.
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5.2.2. Collective Behavior & Opinion Dynamics. Another important field of application of dy-
namical systems on networks are opinion dynamics. They are used to model collective
behavior and influence, usually in the form of a consensus-reaching task, at every point in
time. The main idea behind the concept of social influence is that interacting agents strive
to become more alike [Festinger 1950].

For example, agents in the Ising model for ferromagnets [Binney et al. 1992; Barthélemy
2011] are influenced by the state/opinions of the majority of their peers. This influence
naturally drives the system towards an ordered state where all agents are either positive
or negative (ferromagnets). Hence, the model can be interpreted as a very simple model
for simulating (binary) opinion dynamics. However, the transition probabilities of the Ising
model are influenced by temperature, representing the modeling of external or influential
factors. In particular, if the temperature is above a certain threshold, consensus-finding,
in terms of magnetization, becomes an unstable process that never converges. The Potts
model [Wu 1982; Dorogovtsev et al. 2008] further extends the Ising model by increasing
the number of potential states an agent can assume from two (positive or negative) to
an arbitrary number greater than two. Other factors that might influence the process of
reaching consensus is the size of the system under investigation [Tessone and Toral 2009]. In
particular, this means that di↵erently sized (or connected) systems potentially need di↵erent
strategies to reach consensus.

Opinions are usually represented as a set of words or numbers for each agent individually.
Weidlich [1971] introduced such a model, based on sociodynamics, in 1971. Galam et al.
[1982]; Galam and Moscovici [1991] analyzed the potential applications of the Ising model
for simulating opinion dynamics starting in 1982.

The most wide-spread and adapted models to simulate (among others) opinion dynamics
are the voter model [Cli↵ord and Sudbury 1973; Holley and Liggett 1975], the Axelrod
model [Axelrod 1997] as well as The Naming Game [Baronchelli et al. 2006].

The voter model constitutes that each agent is equipped with a binary variable. At each
step in time, the binary variable of one (randomly chosen) agent is synchronized with one
of its neighbors variable. Introducing the concept of social influence for opinion dynamics.
The voter model has since been adapted and extended by many researchers to fit an array
of di↵erent purposes (e.g., [Mobilia 2003; Mobilia and Georgiev 2005; Mobilia et al. 2007;
Vazquez et al. 2003; Vazquez and Redner 2004; Castelló et al. 2006]).

The Axelrod model [Axelrod 1997] combines the notion of social influence – individuals
becoming more similar upon frequent interactions – and the tendency that similar individ-
uals will have a higher tendency (and frequency) to interact with each other. Each agent
is endowed with a set of characterizing variables. The more variables are shared among
two agents, the more similar they are. Given this description, one would assume that the
described notions are self-reinforcing dynamics and hence, will inevitably produce stable
networks with only identical agents. However, Castellano et al. [2000] have shown that the
resulting number of di↵erent states is dependent on the number of characterizing variables.
Large numbers are likely to result in very few similar individuals (high agent diversity).
Analogously to the voter model, the Axelrod model has been extensively adapted, analyzed
and expanded by researchers to broaden our understanding of the spread of (cultural) traits
across agents (e.g., Klemm et al. [2003b,a]; Flache and Macy [2007]).

The Naming Game originates from idea to analyze and explore the evolution of language
[Steels 1995]. Baronchelli et al. [2006] introduced the most basic version of The Naming
Game in 2006, where a group of agents that communicate via a complete network, try
to reach consensus when naming an entity. Each agent holds a list of synonyms or words
associated with the entity, also referred to as vocabulary, under investigation. Every iteration
(or step in time), two agents are chosen. One agent is assigned the role of the speaker, who
randomly choses a word of a given/pre-defined vocabulary. If the other agent – the listener
– knows (i.e., also has the word in the vocabulary) the chosen word, both agents discard
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all other words in their vocabulary and “agree” on the common word. However, if the
listeners do not know the word of the speaker, the word is appended to their vocabulary
and no words are discarded. In the next step another pair of nodes is chosen and process
is repeated until either consensus is found or a predetermined number of steps (time) have
passed. The Naming Game has spurred a complete line of dynamical models with a variety
of di↵erent parameters, that each address di↵erent problems and tasks (e.g., Abrams and
Strogatz [2003]; Minett and Wang [2008]; Wang and Minett [2005]; Castelló et al. [2006]).
For an excellent and comprehensive introduction to opinion dynamics (among others) we
refer the interested reader to Castellano et al. [2009].

6. DISCUSSION, LIMITATIONS & FUTURE WORK

We have developed a model12 to simulate and characterize the intricate dynamics of activity
in collaboration networks, consisting of an Activity Decay Rate and Peer Influence Growth

Rate. First, we applied it on Zachary’s Karate Club (see Figure 3) dataset to illustrate its
core mechanics. Subsequently, we continued with a linear stability analysis (cf. Section 2.2)
and depicted the behavior that can occur when the master stability equation is invalidated
(see Figure 3). Using our proposed model to simulate activity dynamics, we have shown
that the overall activity in collaboration networks appears to be a composite of the Activity
Decay Rate and the Peer Influence Growth Rate, as described in Section 2. In Section 3,
we have fitted our model on synthetic and empirical datasets to simulate activity dynamics
trends.

The presented results are destined to be interpreted only and solely as an indicator for
trends in activity dynamics, rather than absolute values that can be used for accurately
predicting the activity for a given system. This is a direct result of the di↵erent approxima-
tions and simplifications (cf. Section 3) that we have made when estimating the parameters
for our activity dynamics simulation.

Note that one advantage of our model over other existing approaches, such as autore-
gression, is the interpretability of the ratio �/µ. For example, a ratio of 4 means that users
intrinsically lose activity 4 times faster than they can get back from one of their peers, while
the coe�cients of the autoregression lack such interpretable characteristics. Further, using
the concept of dynamical systems we can represent the underlying mechanisms in a closed
form, allowing for detailed analytical analyses (i.e., the linear stability analysis), which is
much harder (if not impossible) to conduct for other models, such as agent-based models,
autoregression or more complex models based on dynamical systems.

For future work we plan on extending the ability of our model to not only reflect on
changes in activity dynamics but also properly cope with structural changes in the underly-
ing collaboration networks. One additional limitation of the presented approach is the fact
that nodes with a very small degree, which are not connected to the largest connected com-
ponent, inevitably will lose activity until they reach the point of total inactivity. Including
the structural evolution of a collaboration network in our analyses will allow us to mitigate
this e↵ect, as users will only be added to the collaboration network and considered in our
calculations, once they have actually become active. One potential approach involves the
investigation of snapshots of the collaboration networks at every ⌧ , providing additional
insights into the evolution of the parameters of our model and the investigated systems.
Additionally, we assume that peer influence is a symmetric property. This means that posts
and replies exercise the same amount of influence on peers as we do not di↵erentiate be-
tween di↵erent types of activity and influence will always traverse along both directions of
the edges in our collaboration networks. Further, tasks that do not trigger entries in the

12We have released a Python implementation of our model, to estimate empirical parameters and run activity
dynamics simulations, as Open Source Software at https://github.com/simonwalk/ActivityDynamics.
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change-logs (i.e., reading articles, posts or replies) are not considered in our experiments
due to a lack of available data.

The fact that the Activity Dynamics Model only requires a single parameter to be con-
figured represents not only an advantage, but also a limitation. Given that there is only
one parameter that determines the evolution of activity in a system, we are not be able to
model periodic fluctuations with only one ratio. Instead, we have to calculate ratios for mul-
tiple points in time. For future work we plan on extending the Activity Dynamics Model by
adding parameters, for example, to model di↵erent external influences. With this extended
model, we will be able to simulate such periodic patterns with a single configuration. On the
other hand, we are only able to model additional (social) mechanisms with the use of addi-
tional parameters. For example, one reason for the decreasing levels of activity in Wikipedia
might also be related to a very high barrier for newly registered users to add content due to
comprehensive guidelines for contributions and a very concentrated and active community
of power users. Over time, these power users leave Wikipedia for various reasons while new
contributors are lacking to fill in the gaps.

Furthermore, all of our estimated parameters are calculated for the collaboration networks
as a whole. Future work will also include extending the activity dynamics model to calculate
the ratio �/µ on a user level, rather than on a network level. This modification not only
potentially increases the accuracy of our model but would also allow us to gather additional
information for each user of the corresponding networks. Further, with an increased accuracy
in our simulations it will be possible to conduct activity prediction experiments and emulate
network attacks as well as optimize (arbitrary) cost-strategies for increasing activity in these
systems.

In this context it is also worth mentioning that decreasing levels of activity for collabora-
tion networks can also signal that the community has completed their work and no further
actions are required as the intended goal has been achieved. Further analyses are required to
determine if completeness and quality of content a↵ect activity in collaboration networks.
One could even argue that, once we are able to calculate �/µ for each user, we could poten-
tially observe the evolution of users and categorize di↵erent types of users in collaboration
networks (e.g., early adopters or experienced users versus new and inexperienced users).

The ratio �/µ—describing how fast users lose activity (Activity Decay Rate �) over how
fast they regains activity over their neighbors (Peer Influence Growth Rate µ)—fluctuates
below the corresponding highest eigenvalue 

1

for all investigated empirical datasets. Neg-
ative peaks in this ratio represent periods of time (⌧ ; in our case weeks) where activity
grew faster than could be compensated by the Peer Influence Growth Rate. It naturally
follows that a decrease of �—resulting in less activity-loss per contribution for each user—is
necessary to accomplish such drastic increases of activity. If the network itself is of a smaller
scale and/or these negative peaks occur on a frequent basis, the activity dynamics of the
corresponding networks are depending on the contributions (and thus influence) of single
(individual) users. To compare the stability of the activity dynamics across multiple net-
works we calculated the System Mass and Activity Momentum p—indicating the required
force to accelerate or render the corresponding collaboration networks inactive.

When comparing p and the results of our empirical illustration (cf. Figures 9 and 10)
between the di↵erent datasets, we can see that the Activity Momentum is very small for
datasets that either (i) exhibit only a very small number of changes and are close to inactivity
or (ii) exhibit a small 

1

(see Figure 9 and 10). This suggests that we can use Activity

Momentum as an indicator for the robustness of a collaboration network with regards to
its activity dynamics.

Further, we can characterize the potential of a collaboration network to become self-
sustaining by comparing the calculated ratios of �/µ with the corresponding 

1

and Activity

Momentum. If the ratio is below 
1

, our master stability equation is invalidated, pushing the
system towards a new fixed point where the forces of the Activity Decay Rate and the Peer
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Influence Growth Rate reach an equilibrium so that the network converges towards a state of
immanent and lasting activity (see Figure 3). If such a state is reached and combined with
a high Activity Momentum, the corresponding collaboration network has reached critical
mass of activity and has become self-sustaining; no external impulses are required to keep
the network active. Of course, in real world scenarios, activity will not last forever without
providing additional incentives as interest (and thus activity) in a system potentially decays
over time. As a consequence, this would first result in an increase of µ and inevitably, with
a su�ciently large µ, the collaboration network would return to its stable fixed point, once
our master stability equation holds again, and activity would once more converge towards
zero. Once we extend our model to allow for user-based calculations, we will be able to
not only calculate Activity Momentum for collaboration networks, but also for single and
individual users.
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