Visualizing User Editing Behavior in Collaborative Ontology-Engineering Projects

Simon Walk¹, Tania Tudorache¹ and Mark A. Musen¹

¹Stanford Center for Biomedical Informatics Research

October 17, 2016

Over the last decade, ontologies have become the mainstay in the biomedical domain.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Over the last decade, ontologies have become the mainstay in the biomedical domain.

• New and complementing areas of application

3

(日) (周) (三) (三)

Over the last decade, ontologies have become the mainstay in the biomedical domain.

- New and complementing areas of application
- Increased complexity & size

3

Over the last decade, ontologies have become the mainstay in the biomedical domain.

- New and complementing areas of application
- Increased complexity & size

For example, ICD-11 consists of roughly 50,000 classes.

< 回 > < 三 > < 三 >

Over the last decade, ontologies have become the mainstay in the biomedical domain.

- New and complementing areas of application
- Increased complexity & size

For example, ICD-11 consists of roughly 50,000 classes.

- Highly specialized knowledge
- Many different areas of expertise

周 ト イ ヨ ト イ ヨ ト

Over the last decade, ontologies have become the mainstay in the biomedical domain.

- New and complementing areas of application
- Increased complexity & size

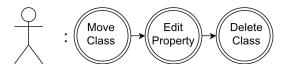
For example, ICD-11 consists of roughly 50,000 classes.

- Highly specialized knowledge
- Many different areas of expertise

While online collaborative projects have become common, the processes that drive these collaborations are still not well understood.

- 4 周 ト 4 日 ト 4 日 ト

Dataset Characteristics


Table: Characteristics of the ICD-11 and ICTM datasets used in our analyses.

	ICD-11	ІСТМ
Classes #	48,771	1,506
Changes #	439, 229	67, 522
Users #	109	27
First change date	2009/11/18	2011/02/02
Last change date	2013/08/29	2013/07/17
Editing period (ca.)	4 years	2.5 years

3

(日) (同) (日) (日) (日)

(Sequential) Change-Type Sequences

3 x 3

▲ 同 ▶ → 三 ▶

Types of Changes

Table: Listing of all 15 change-type actions in the change-logs.

Change Type	Description
Add Condition	A restriction is added to a class.
Add Direct Type	A direct type is added to an entity.
Add Property Value	A new value is added to a property.
Create Class	A new class is created.
Create Reference	A new reference is created.
Delete Class	A class is deleted.
Delete Condition	A restriction is deleted from a class.
Delete Property Value	A property value is deleted.
Edit Property Value	A property value is edited.
Import Property	A property value is imported from an external ontology.
Move Class(es)	One or more classes are moved in the class hierarchy.
Remove Superclass	A superclass of a class is removed.
Replace Reference	A reference is replaced.
Retire Class	A class is retired.
BREAK	30 minutes of inactivity between two actions.

October 17, 2016 5 / 12

э.

• • • • • • • • • • • •

Using Markov chains

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Using Markov chains

• State space S, listing all possible states $s_1, s_2, ... s_n \in S$ with |S| = n.

(日) (周) (三) (三)

Using Markov chains

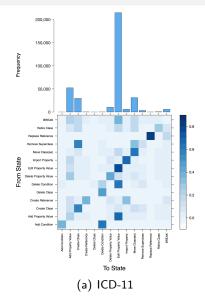
- State space S, listing all possible states $s_1, s_2, ... s_n \in S$ with |S| = n.
- Matrix *W*, with each element *w_{ij}* representing the number of transitions between states *s_i* and *s_j*.

イロト 不得下 イヨト イヨト

Using Markov chains

- State space S, listing all possible states $s_1, s_2, ... s_n \in S$ with |S| = n.
- Matrix *W*, with each element *w_{ij}* representing the number of transitions between states *s_i* and *s_j*.
- Transition matrix P with p_{ij} listing the probability to go from state s_i to s_j and ∑_j p_{ij} = 1.

Using Markov chains

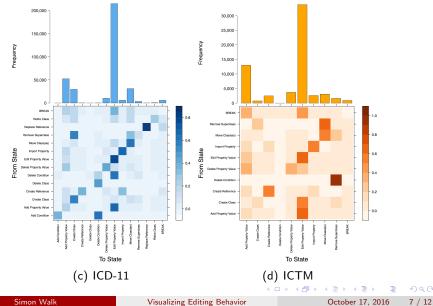

- State space S, listing all possible states $s_1, s_2, ... s_n \in S$ with |S| = n.
- Matrix *W*, with each element *w_{ij}* representing the number of transitions between states *s_i* and *s_j*.
- Transition matrix P with p_{ij} listing the probability to go from state s_i to s_j and ∑_j p_{ij} = 1.

First-order Markov chain (Markovian property):

$$P(X_{t+1} = s_j | \underbrace{X_1 = s_{i_1}, ..., X_{t-1} = s_{i_{t-1}}, X_t = s_{i_t}}_{\text{all previous transitions}}) = P(X_{t+1} = s_j | \underbrace{X_t = s_{i_t}}_{\text{current transition}}) = p_{ij}$$

Visualizing Editing Behavior

Fitted Markov Models



Simon Walk

3

<ロ> (日) (日) (日) (日) (日)

Fitted Markov Models

Visualizing Editing Behavior

Comparing Interaction Behaviors

To compare **absolute differences** between the two projects, we calculate Q_{abs} as:

$$W_{abs} = W_{ICD-11} - W_{ICTM} \tag{1}$$

and normalize each row of W_{abs} with its ℓ 1-norm to get Q_{abs} .

- 4 同 6 4 日 6 4 日 6

Comparing Interaction Behaviors

To compare **absolute differences** between the two projects, we calculate Q_{abs} as:

$$W_{abs} = W_{ICD-11} - W_{ICTM} \tag{1}$$

and normalize each row of W_{abs} with its ℓ 1-norm to get Q_{abs} .

To compare the **relative importance** of transitions, we calculate Q_{rel} as:

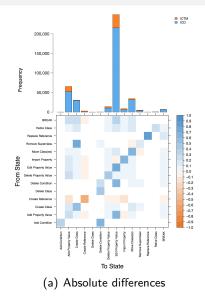
$$Q_{rel} = P_{ICD-11} - P_{ICTM}.$$
 (2)

Comparing Interaction Behaviors

To compare **absolute differences** between the two projects, we calculate Q_{abs} as:

$$W_{abs} = W_{ICD-11} - W_{ICTM} \tag{1}$$

and normalize each row of W_{abs} with its ℓ 1-norm to get Q_{abs} .

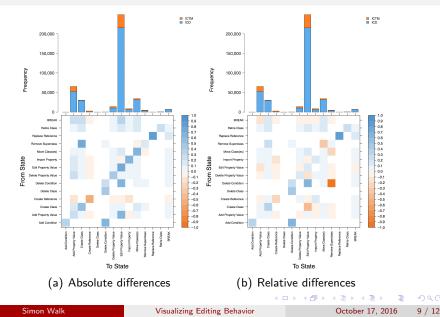

To compare the **relative importance** of transitions, we calculate Q_{rel} as:

$$Q_{rel} = P_{ICD-11} - P_{ICTM}.$$
 (2)

• Transition probabilities range from -1 to 1.

Simon Walk			

Visualization of Differences



Simon Walk

3

イロト イヨト イヨト イヨト

Visualization of Differences

Conclusions

• We have presented new insights into the editing behavior and workflows of users, not directly visible from static data.

Conclusions

- We have presented new insights into the editing behavior and workflows of users, not directly visible from static data.
- The visualizations can be used to identify and analyze differences in the workflows between projects (e.g., different tools or guidelines).

Conclusions

- We have presented new insights into the editing behavior and workflows of users, not directly visible from static data.
- The visualizations can be used to identify and analyze differences in the workflows between projects (e.g., different tools or guidelines).

Future Work

• Making the visualizations interactive (e.g., dynamically aggregate similar types of changes into abstract classes of changes).

Conclusions

- We have presented new insights into the editing behavior and workflows of users, not directly visible from static data.
- The visualizations can be used to identify and analyze differences in the workflows between projects (e.g., different tools or guidelines).

Future Work

- Making the visualizations interactive (e.g., dynamically aggregate similar types of changes into abstract classes of changes).
- Use dynamic grouping to visualize higher-order Markov chains, and avoid visual clutter due to the increased number of states.

イロト 人間ト イヨト イヨト

Conclusions

- We have presented new insights into the editing behavior and workflows of users, not directly visible from static data.
- The visualizations can be used to identify and analyze differences in the workflows between projects (e.g., different tools or guidelines).

Future Work

- Making the visualizations interactive (e.g., dynamically aggregate similar types of changes into abstract classes of changes).
- Use dynamic grouping to visualize higher-order Markov chains, and avoid visual clutter due to the increased number of states.
- Compare the editing behavior of users across different ontology-development tools to assert the influence of the tool on the editing behavior.

Questions?

October 17, 2016 11 / 12

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

Thanks!

Thanks!

NSF Award#: IIS-1622628

IIS: Travel Fellowships for Students from U.S. Universities to Attend ISWC 2016

Timeline: March 1, 2016 - February 28, 2017

- N

A 🖓 h