Activity Dynamics in Collaboration Networks

Simon Walk ^{1,2}, Denis Helic², Florian Geigl² and Markus Strohmaier^{3,4}

¹Stanford University ²Graz University of Technology ³University of Koblenz-Landau

⁴Gesis - Leibniz Institute for the Social Sciences

September 25, 2016

Motivation

Websites often struggle to keep users active and become self-sustaining.

• For example, Editors in Wikipedia!

Problem: We lack the tools to properly analyze, model and simulate activity in online collaboration networks.

Model based on two opposing principles:

- Without incentives, users tend to lose interest to contribute and thus, systems become inactive.
- People are susceptible to actions taken by their peers.

Goal: Analyze and manipulate dynamical parameters to model and simulate activity in collaboration networks.

Activity Dynamics

Modeled as dynamical system on a network

- Nodes represent users
- Edges represent collaboration

Model configuration with two basic activity mechanisms in online collaboration networks:

- Activity Decay Rate λ , which postulates how fast a user loses interest to contribute,
- Peer Influence Growth Rate μ, postulating to what extent a user is influenced by the actions taken by her peers.

Dynamics and parameters are the same for each user in the population.

Activity Dynamics Model

Activity is represented as

- a continuous real-valued variable x_i
- evolving on node *i* of the collaboration network
- over relative time τ .

The general time evolution equation can be written as:

Intrinsic Activity Decay & Peer Influence

Activity Evolution Example

Evolution of Intrinsic Activity (blue) and Peer Influence (yellow) over time.

Linear Stability Analysis

Stability Example:

Empirical Illustration

Illustrate Activity Dynamics model on empirical datasets.

		StackExcha	ange Dataset	s		Sema	antic Media	Wiki Dataset	s
Dataset	History	Bitcoin	English	Math		Beachapedia	Nobbz	NeuroLex	15MW
Users Edges κ_1	682 5, 179 54.33	1, 299 5, 528 43.88	7, 893 83, 457 162.04	35, 476 477, 133 303.58		16 38 6.71	36 125 11.46	112 383 18.4	394 772 19.97
Posts & Replies Weeks	$\begin{array}{c}12,496\\52+3\end{array}$	$\begin{array}{c} 12,295\\52+3\end{array}$	${}^{151,028}_{52+3}$	$\begin{array}{r} 986,996\\52+3\end{array}$		$2,718 \\ 52+3$	603 52 + 3	$\begin{array}{c} 33,792\\52+3\end{array}$	${ \begin{array}{r} 102,521\\ 52+3 \end{array} }$

• Fit λ/μ using sliding window of 4 weeks and predict week 5.

• Formulated as least squares cost function, which calculates the error of the sum of activity over multiple data points *k* over a certain period of time *T*

$$J(\frac{\lambda}{\mu}) = \frac{1}{T} \sum_{k=0}^{T-1} \left[\sum_{i}^{n} x_i(k+1) - \sum_{i}^{n} \hat{x}_i(k+1) \right]^2$$
(4)

Simulation of Activity Trends

System Mass & Activity Momentum

System Mass

- Measures system stability or inertia to changes in activity.
- Is represented by $\frac{1}{\rho}$, where ρ is the standard deviation of $\frac{\lambda}{\mu}$, normalized over κ_1 .

Activity Momentum

- The higher the *Activity Momentum* of a collaboration network, the more force is needed to "stop" the system.
- Activity Momentum is System Mass multiplied with Activity.

Dataset	AVG Activity (last month)	ρ	System Mass	Activity Momentum (last month)
Math SE	19, 255 (70, 130)	0.0115	86.65	1,668,446 (6,076,765)
English SE	2,952 (13,751)	0.0344	29.07	85, 815 (399, 742)
Bitcoin SE	246 (782)	0.0762	13.12	3,228 (10,260)
History SE	248 (1, 110)	0.0554	18.10	4,489 (20,091)
15MW	1,999 (4,702)	0.0506	19.76	39, 500 (92, 912)
NeuroLex	668 (1, 131)	0.0532	18.80	12.558 (21, 263)
Nobbz	12 (270)	0.0802	12.67	152 (3, 421)
Beachapedia	54 (228)	0.0547	18.28	987 (4, 168)

Simon Walk

Activity Dynamics in Collaboration Networks

Conclusions

- We have presented a simple dynamical system to model activity in online collaboration networks
- The model is based on two well-studied and opposing principles.
 - Intrinsic Activity Decay.
 - Peer Influence.
- System Mass & Activity Momentum can be used to characterize online collaboration networks.
 - System Mass as metric for stability.
 - Activity Momentum as a metric for robustness.

Future Work

- Extend the Activity Dynamics Framework to
 - handle evolving network structures
 - calculate activity dynamics per user
 - suggest optimal intervention strategies
- Use our model to (automatically) learn the collaboration network!

Questions?

Questions?

Walk, S., Helic, D., Geigl, F., & Strohmaier, M. (2016). Activity dynamics in collaboration networks. ACM Transactions on the Web (TWEB), 10(2), 11.

Thanks!

Thanks!

Walk, S., Helic, D., Geigl, F., & Strohmaier, M. (2016). Activity dynamics in collaboration networks. ACM Transactions on the Web (TWEB), 10(2), 11.