Extracting and Analyzing Sequential Interaction-Patterns

Simon Walk

July 22, 2016

Motivation

Over the last decade, ontologies have become the mainstay in the biomedical domain.

- New and complementing areas of application
- Increased complexity & size

For example, ICD-11 consists of roughly 50,000 classes.

- Highly specialized knowledge
- Many different areas of expertise

Ontologies have become very hard to develop and maintain.

Collaborative Ontology Engineering

Similar to Wikipedia, contributors engage remotely in developing ontologies.

- Many new and unexplored problems
- Layer of social interactions adds complexity

Administrators are in need of tools to better manage the complex collaborative engineering process.

Objective: Broaden our understanding of the dynamic social processes by analyzing edit patterns.

Outline

Interaction patterns in BioPortal

How can we explain edit patterns in collaborative ontology-engineering projects?

Do patterns & regularities exist in collaborative ontology-engineering projects?

How to identify regularities & patterns in collaborative ontology-engineering projects?

Datasets

Characteristics of the datasets used for the different collaborative ontology-engineering analyses.

	ICD-11	ICTM	NCIt	BRO	OPL
# classes	48, 771	1, 506	102, 865	528	393
# changes	439, 229	67, 522	294, 471	2, 507	1, 993
# users	109	27	17	5	3
first change	18.11.2009	02.02.2011	01.06.2010	12.02.2010	09.06.2011
last change	29.08.2013	17.07.2013	19.08.2013	06.03.2010	23.09.2011
observation period (ca.)	4 years	2.5 years	3 years	1 month	3 months

(Sequential) Interaction-Sequences

• User-based sequences

• Class-based sequences

Identifying Interaction Patterns

Using Markov chains

- State space S, listing all possible states $s_1, s_2, ... s_n \in S$ with |S| = n.
- Transition matrix P with p_{ij} listing the probability to go from state s_i to s_j .

First-order Markov chain (Markovian property):

$$P(X_{t+1} = s_j | \underbrace{X_1 = s_{i_1}, ..., X_{t-1} = s_{i_{t-1}}, X_t = s_{i_t}}_{ ext{all previous transitions}}) = P(X_{t+1} = s_j | \underbrace{X_t = s_{i_t}}_{ ext{current transition}}) = p_{ij}$$

Identifying Interaction-Patterns

Markov chain of order k means that k previous states contain (useful) predictive information about the next state.

$$P(X_{t+1} = s_j | \underbrace{X_1 = s_{i_1}, ..., X_{t-1} = s_{i_{t-1}}, X_t = s_{i_t}}_{\text{all previous transitions}}) = P(X_{t+1} = s_j | \underbrace{X_{t-k+1} = s_{i_{t-k+1}}, ..., X_t = s_{i_t}}_{\text{k transitions}})$$

Overfitting and model complexity are problematic!

- Lower order models are nested in higher order models!
 - Solution: Model selection and prediction experiments
- Parameter increase: $\theta = |S|^k |S|$
 - Solution: Aggregated/abstract states

Process to Identify Interaction-Patterns

- Preprocessing
 - Mapping, Session Separation, State Selection, Path Extraction
- Model Fitting
- Model Selection
 - Akaike IC, Bayesian IC, Prediction Experiments
- Interpretation

[Walk et al., 2015b] Simon Walk, Philipp Singer, Markus Strohmaier, Denis Helic, Natalya Noy, Mark Musen: How to apply Markov chains for modeling sequential edit patterns in collaborative ontology-engineering projects. Int. J. Hum.-Comput. Stud. 84: 51-66 (2015)

Outline

Do patterns & regularities exist in collaborative ontology-engineering projects?

How to identify regularities & patterns in collaborative ontology-engineering projects?

Sequences to Analyze for Patterns

- User Sequences
 - Who will change a class next?
 - Which type of change will a user perform next?
- Content-based Sequences
 - Which area of the user interface will a user use next?
 - Which property will a user change next?
- Structural Sequences
 - Which class is a user going to edit next?
 - Where is the next class located in the ontology?
 - Do users move along the ontological hierarchy when contributing to the projects?

Do users move along the ontological hierarchy when contributing to the projects?

States: Self, Parent, Child, Sibling, Cousin, Ascendent, Descendent, Other

Do users move along the ontological hierarchy when contributing to the projects?

Understanding Editing Behaviors in Ontology-Development Projects!

States: Types of changes (aggregated) available in iCAT (Edit Property Value, Create

Class, etc.).

Modeling Sequential Interaction-Sequences

Summary of findings

- The edit behavior of users is influenced by the hierarchy of the ontology.
- Users edit the ontology top-down and breadth-first.
- Users work in micro-workflows.
- Roles of users can be identified.
- Users edit closely related classes.
- Users perform property-based workflows.

[Walk et al., 2014b] Simon Walk, Philipp Singer, Markus Strohmaier, Tania Tudorache, Mark Musen, Natalya Nov; Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains. Journal of Biomedical Informatics 51: 254-271 (2014)

Predicting Aspects of Future Actions

k cross-fold prediction experiment

- k stratified splits
 - k-1 splits for the training set
 - 1 split for the test set
- Determine the rank of each transition in test set
 - Modified competition ranking
 - Natural occam's razor
- Calculate average rank over all transitions and splits
- Lowest average rank determines best performing Markov chain order
 - Best models: Average rank between 1.7 and 3
 - Worst models: Average rank between 2 and 6

Predicting Aspects of Future Actions

Best performing Markov chain orders

	-	ICD-11		ICTM		NCIt	-	BRO		OPL
Predict Users for Classes	-	1		1	1	1		1		2
Predict Change Types for Users	Ī	3		2		-	T	1	T	1
Predict Change Types for Classes	Ī	4		3		-		2	Ţ	2
Predict Properties for Users	-	1		1		-		1		0
Predict Properties for Classes	Ī	1	Ī	1	Ī	-		3		2

[Walk et al., 2014a] Simon Walk, Philipp Singer, Markus Strohmaier: Sequential Action Patterns in Collaborative Ontology-Engineering Projects: A Case-Study in the Biomedical Domain. CIKM 2014: 1349-1358

Outline

How can we explain edit patterns in collaborative ontology-engineering projects?

Do patterns & regularities exist in collaborative ontology-engineering projects?

How to identify regularities & patterns in collaborative ontology-engineering projects?

Formulating & Comparing hypotheses

- Hypotheses are potential explanations as opposed to actual empirical transitional observations.
- Can be expressed as hypothesis matrix Q where
 - q_{ij} represents the belief in the transition between states s_i and s_i
 - and $\sum_{j} q_{ij} = 1$ for each row i of Q.

Example: Top-down hypothesis

Classes deeper in the hierarchy than the previously edited class are more likely to be changed next.

$$q_{ij} = \begin{cases} 1, & \text{if } depth_i < depth_j, \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

Interaction-Patterns in Ontology-Engineering

- (c) Top-Down Example
- (d) Hypothesis Matrix Q

Hypotheses

HypTrails

A framework to study the relative plausibility of hypotheses (about the production of human edit sequences).

- Sequences modeled as first-order Markov chain.
- Uses Bayesian inference (marginal likelihood) for comparing different hypotheses.
 - The marginal likelihood P(D|H) describes the probability of data D given hypothesis H.
 - Higher evidences indicate higher plausibility.
- Factor k, describing the strength of our belief in a hypothesis.
- Produces a ranked list of hypotheses (Bayesian evidences).

HypTrails Results

[Walk et al., 2015a] Simon Walk Philipp Singer, Lisette Espin Noboa, Tania Tudorache, Mark Musen, Markus Strohmaier: **Understanding How Users Edit Ontologies: Comparing Hypotheses About Four Real-World Projects.** International Semantic Web Conference (1) 2015: 551-568

Outline

Interaction patterns in BioPortal

How can we explain edit patterns in collaborative ontology-engineering projects?

Do patterns & regularities exist in collaborative ontology-engineering projects?

How to identify regularities & patterns in collaborative ontology-engineering projects?

BioPortal (Jan – Apr 2016)

Apply Markov chains and conduct analyses on Request Logs of BioPortal

Feature	Value
Requests before filtering	~50 M
Requests after filtering	$\sim\!16.2$ M
Click-requests (interactions)	~2.1 M
Distinct IPs	160, 325
	1,652 (IDs + Names)
Number of Ontologies	∼730 IDs
	${\sim}500$ unresolvable names

Interaction-Patterns in Ontology-Engineering

July 22, 2016

Seconds between click-requests (cut-off at 4, 200 seconds)

Ordered by IP, considered only users with > 1 request.

Hours between click-requests (cut-off at 168 hours)

Ordered by IP, considered only users with > 1 request.

Click-Sessions

Definition:

A sequence of clicks, where each click is performed within 1,800 seconds (30 minutes) of the previous click. However, sessions can be longer than 30 minutes!

Problem:

Due to the dynamic nature of BioPortal (AJAX, caching, ...), Referrer is often "wrong" (or missing), making it impossible to trace sessions, tabbed browsing, back-clicks, etc.!

Click-Sessions in BioPortal (Jan – Apr 2016)

Feature	Value		
Click-requests	~2.1 M		
Sessions	198,610		
1-click sessions	64, 492		
\geq 10-click sessions	38, 535		
Min/Max clicks per session	1 / 3,678		
Average/Median/Mode clicks per session	10.5 / 3 / 1		
Min/Max duration	0 / 6h		
Average/Median/Mode duration	175.6s / 2s / 1s		

Requests & Duration per Click-Session

Example Click-Session

Timestamp	Request
2016-03-14 09:07:46	
2016-03-14 09:07:48	/login?redirect=http%3A%2F%2Fbioportal.bioontology.org%2F
2016-03-14 09:07:50	/login
2016-03-14 09:08:04	
2016-03-14 09:08:22	/ontologies/MCCV
2016-03-14 09:09:34	/ontologies/MCCV/submissions/new
2016-03-14 09:08:58	/ontologies/MCCV/submissions
2016-03-14 09:07:59	/ontologies/success/MCCV
2016-03-14 09:10:14	/ontologies/MCCV

Example Click-Session

Frequency of Click-Actions

Example Click-Session

Timestamp	Click-Action	Request
2016-03-14 09:07:46	Browse Main Page	/
2016-03-14 09:07:48	Login	/login?redirect=http%3A%2F%2Fbioportal.bioontology.org%2F
2016-03-14 09:07:50	Login	/login
2016-03-14 09:08:04	Browse Main Page	
2016-03-14 09:08:22	Ontology Summary	/ontologies/MCCV
2016-03-14 09:09:34	Create Ontology Submission	/ontologies/MCCV/submissions/new
2016-03-14 09:08:58	Browse Ontology Submission	/ontologies/MCCV/submissions
2016-03-14 09:07:59	Create Ontology Submission	/ontologies/success/MCCV
2016-03-14 09:10:14	Ontology Summary	/ontologies/MCCV

Interaction Sequence:

Browse Main Page \to Login \to Ontology Summary \to Create Ontology Submission \to Browse Ontology Submission \to Ontology Summary

BioPortal Click-Transitions (first-order)

BioPortal Click-Requests per Ontology (Top 50)

BioPortal Click-Transitions per Ontology

Absolute Click-Transitions of CPT & MEDDRA

Next Steps

- Interpret and further analyze differences between ontology click-transitions on BioPortal.
- Compare usage of the REST API and the UI.
- Cluster users according to their click-action sequences (similarities)!
 - Calculate stationary distribution vectors and use these to determine distances for clustering.
 - Compare Browsing behaviors between different clusters!
- Compare editing behaviors before and after specific events (e.g., ICD-11 iCAT editing vs. Public ICD-11 Beta Draft) for different datasetsl
- Use HypTrails to analyze which collaborative ontology-engineering methodologies people (most likely) follow, when developing an ontology "in the wild".

Questions?

Thanks!

Hypotheses

HypTrails

Distribute chips to elicit Dirichlet prior

$$\beta = m^2 + \underbrace{k * m^2}_{\text{informative prior}}$$
(2)

Process to α_{ij} :

- Initial uniform distribution (m²)
- Informative distribution $(Q = \frac{Q}{||Q||_1} * \beta)$
 - Normalize Q over ℓ_1 -norm
 - ullet Multiply with remaining eta
- Remaining informative distribution
 - ullet Rank and distribute according to $Q=Q-\lfloor Q \rfloor$

HypTrails - Eliciting Prior Example

$$\beta = 3^2 + k * 3^2, k = 1$$

$$Q = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} \qquad \qquad Q = \begin{pmatrix} 0 & 0.33 & 0.66 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\frac{Q}{||Q||_1} = \begin{pmatrix} 0 & 0.165 & 0.33 \\ 0 & 0 & 0 \\ 0.5 & 0 & 0 \end{pmatrix} Q\beta = \begin{pmatrix} 0 & \lfloor 1.485 \rfloor & \lfloor 2.97 \rfloor \\ 0 & 0 & 0 \\ \lfloor 4.5 \rfloor & 0 & 0 \end{pmatrix}$$

$$\beta = 9 - 7$$

Model selection

Likelihood ratio test

$${}_{k}\eta_{m} = -2(\overbrace{\mathcal{L}(\mathcal{P}(\mathcal{D}|\theta_{k})}^{\text{Log-Likelihood}_{k}}) - \overbrace{\mathcal{L}(\mathcal{P}(\mathcal{D}|\theta_{m}))}^{\text{Log-Likelihood}_{m}}))$$
(3)

Significance test for likelihood ratios

- χ^2 -CDF with $_k\eta_m$ and degrees of freedom $(\theta_m-\theta_k)$
- p-value defines significance of alternate model

Model selection

Akaike Information Criterion

$$AIC(k) = {}_{k}\eta_{m} - 2(|\theta_{m}| - |\theta_{k}|)$$
(4)

Balances model complexity (over/underfitting)

ullet Penalizes model parameters heta

Bayesian Information Criterion

$$BIC(k) = {}_{k}\eta_{m} - 2(|\theta_{m}| - |\theta_{k}|)\ln(n)$$
(5)

Additionally penalizes the number of observations n (transitions).

Model selection

Bayesian Model Selection & HypTrails

Bayes' rule for posterior distribution of θ given data D and hypothesis H.

$$\underbrace{P(\theta|D,H)}_{\text{posterior}} = \underbrace{\frac{P(D|\theta,H)}{P(\theta|H)}}_{\text{marginal likelihood}} \underbrace{\frac{P(D|H)}{P(\theta|H)}}_{\text{marginal likelihood}}$$
(6)

$$P(D|H) = \prod_{i} \frac{\Gamma(\sum_{j} \alpha_{ij})}{\prod_{j} \Gamma(\alpha_{ij})} \frac{\prod_{j} \Gamma(n_{ij} + \alpha_{ij})}{\Gamma(\sum_{j} (n_{ij} + \alpha_{ij}))}$$
(7)

- ullet Hyperparameters lpha represent pseudo counts
- n_{ij} is the number of transitions between states s_i and s_j